同次連立1次方程式の定義と性質
\[
A\boldsymbol{x}=\boldsymbol{0}
\]
連立1次方程式と拡大係数行列の定義と性質
\[
\left(A,\boldsymbol{b}\right)=\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1n} & b_{1}\\
a_{21} & a_{22} & \cdots & a_{2n} & b_{2}\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m}
\end{array}\right)
\]
(*)階数の性質
\[
\rank\left(AB\right)\leq\min\left(\rank\left(A\right),\rank\left(B\right)\right)
\]
行列の簡約化と階数(ランク)の定義
\[
\rank\left(\begin{array}{ccc}
1 & 0 & 1\\
0 & 1 & 0
\end{array}\right)=2
\]
