巾関数と多重対数関数の積の積分

\[ \int z^{\alpha}\Li_{n}\left(z\right)dz=\frac{\left(-1\right)^{n}z^{\alpha+1}}{\left(\alpha+1\right)^{n}}\left\{ \sum_{k=1}^{n}\left(\left(-1\right)^{k}\left(\alpha+1\right)^{k-1}\Li_{k}\left(z\right)\right)+\frac{z}{\alpha+2}F\left(1,\alpha+2;\alpha+3;z\right)\right\} \]

三角関数と双曲線関数のn乗積分

\[ \int\sin^{2n+m_{\pm}}xdx=\frac{\Gamma\left(n+\frac{1}{2}+\frac{m_{\pm}}{2}\right)}{\Gamma\left(n+1+\frac{m_{\pm}}{2}\right)}\left\{ -\frac{1}{2}\sum_{k=0}^{n-1}\left(\frac{\Gamma\left(k+1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(k+\frac{3}{2}+\frac{m_{\pm}}{2}\right)}\cos x\sin^{2k+1+m_{\pm}}x\right)+\frac{\Gamma\left(1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(\frac{1}{2}+\frac{m_{\pm}}{2}\right)}\int\sin^{m_{\pm}}xdx\right\} \]