微分積分 2021年4月18日 冪関数と指数関数の積の積分 \[ \int z^{\alpha}e^{\beta z}dz=\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C \]
微分積分 2021年4月3日 微分と積分の関係 \[ f\left(x\right)=\int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx-a \]
微分積分 2020年12月26日 微分・原始関数・定積分・不定積分の定義 \[ \frac{df(x)}{dx}=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]
微分積分 2020年12月17日 ルートの中に2乗を含む積分 \[ \int f\left(\sqrt{a^{2}-x^{2}}\right)dx=a\int f\left(a\cos t\right)\cos tdt\cnd{x=a\sin t} \]
微分積分 2020年12月16日 部分積分と繰り返し部分積分 \[ \int f(x)g(x)dx=\sum_{k=0}^{n-1}\left(-1\right)^{k}f^{(-(k+1))}(x)g^{(k)}(x)+(-1)^{n}\int f^{(-n)}(x)g^{(n)}(x)dx \]