カントールの対関数 2022年7月17日 カントールの対関数の逆関数 \[ \begin{cases} m=\frac{t^{2}+3t}{2}-\pi\\ n=\pi-\frac{t^{2}+t}{2} \end{cases} \]
カントールの対関数 2022年7月12日 カントールの対関数の漸化式 \[ \pi\left(m,n\right)+1=\begin{cases} \pi\left(m-1,n+1\right) & m\ne0\\ \pi\left(n+1,0\right) & m=0 \end{cases} \]
カントールの対関数 2022年7月8日 カントールの対関数の定義 \[ \pi\left(m,n\right)=\frac{\left(m+n\right)\left(m+n+1\right)}{2}+n \]
総和総乗問題 2022年6月30日 分母に階乗の和を含む総和 \[ \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots+\frac{100}{98!+99!+100!}=? \]
数学その他問題 2022年5月28日 3変数3次対称式の因数分解 \[ \left(x+y+z\right)^{3}-\left(x^{3}+y^{3}+z^{3}\right)\text{を因数分解せよ} \]
ベータ関数 2022年4月12日 ベータ関数の絶対収束条件 ベータ関数$B\left(p,q\right)$は$\Re\left(p\right)>0\;\land\;\Re\left(q\right)>0$で絶対収束
整式 2022年3月18日 n乗同士の和と差の因数分解 \[ a^{2n+1}\pm b^{2n+1}=\left(a\pm b\right)\left(\sum_{k=0}^{2n}\left(\mp1\right)^{k}a^{2n-k}b^{k}\right) \]