集合の相等・部分集合・真部分集合の定義
集合の相等・部分集合・真部分集合の定義
(1)集合の相等
集合\(A\)の任意の要素が集合\(B\)の要素であり、集合\(B\)の任意の要素が集合\(A\)の要素であるとき、\(A\)と\(B\)は等しいといい、\(A=B\)で表す。
すなわち\(A=B\Leftrightarrow\forall x\left(x\in A\leftrightarrow x\in B\right)\)である。
または
\begin{align*}
A=B & \Leftrightarrow\forall x\left(x\in A\leftrightarrow x\in B\right)\\
& \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\land x\in A\leftarrow x\in B\right)\\
& \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\forall x\left(x\in A\leftarrow x\in B\right)\\
& \Leftrightarrow A\subseteq B\land A\supseteq B
\end{align*}
と表される。
\(A\)と\(B\)が等しくないとき\(A\ne B\)で表す。
すなわち\(A\ne B\Leftrightarrow\exists x\left(x\in A\nleftrightarrow x\in B\right)\)である。
または、
\begin{align*}
A\ne B & \Leftrightarrow\lnot\left(A\ne B\right)\\
& \Leftrightarrow\lnot\left(A\subseteq B\land A\supseteq B\right)\\
& \Leftrightarrow A\nsubseteq B\lor A\nsupseteq B
\end{align*}
と表される。
(2)部分集合
集合\(A\)の任意の要素が集合\(B\)の要素であるとき、\(A\)は\(B\)の部分集合であるといい、\(A\subseteq B\)または\(B\supseteq A\)で表す。
すなわち、
\[
A\subseteq B\Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)
\]
である。
\(A\)は\(B\)の部分集合でないとき\(A\nsubseteq B\)で表す。
すなわち、
\[
A\nsubseteq B\Leftrightarrow\exists x\left(x\in A\nrightarrow x\in B\right)
\]
または、
\[
A\nsubseteq B\Leftrightarrow\exists x\left(x\in A\land x\notin B\right)
\]
である。
(3)真部分集合
\(A\)は\(B\)の部分集合であるが、\(A\)と\(B\)は異なる集合であるとき、\(A\subsetneq B\)または\(B\supsetneq A\)で表す。
すなわち、
\[
A\subsetneq B\Leftrightarrow\left(A\subseteq B\land A\ne B\right)
\]
である。
これは、
\[
A\subsetneq B\Leftrightarrow\forall x\left(x\in A\rightarrow x\notin B\right)\land\exists x\left(x\in B\rightarrow x\notin A\right)
\]
である。
-
\(A\)は\(B\)の部分集合でないときは以下のようになる。
\begin{align*}
A\nsubseteq B & \Leftrightarrow\lnot\left(A\subseteq B\right)\\
& \Leftrightarrow\lnot\left(\forall x\left(x\in A\rightarrow x\in B\right)\right)\\
& \Leftrightarrow\exists x\left(x\in A\nrightarrow x\in B\right)\\
& \Leftrightarrow\exists x\lnot\left(\lnot\left(x\in A\right)\lor x\in B\right)\\
& \Leftrightarrow\exists x\left(x\in A\land x\notin B\right)
\end{align*}
集合\(A\)の要素であって集合\(B\)の要素でなければいいと、
\[
\forall x\left(x\in A\rightarrow x\notin B\right)\Leftrightarrow A\nsubseteq B
\]
とすると間違いなので注意。
何故なら\(A\)に属さない要素を\(x\)として適当に取れば\(x\in A\)が偽になり左辺は常に成り立つからである。
\[
\left(\forall x\in A,x\in B\right)\Leftrightarrow A\subseteq B
\]
とすれば、
\[
\left(\exists x\in A,x\notin B\right)\Leftrightarrow A\nsubseteq B
\]
となる。
-
真部分集合は
\begin{align*}
A\subsetneq B & \Leftrightarrow A\subseteq B\land A\ne B\\
& \Leftrightarrow A\subseteq B\land\lnot\left(A\subseteq B\land A\supseteq B\right)\\
& \Leftrightarrow A\subseteq B\land\left(A\nsubseteq B\lor A\nsupseteq B\right)\\
& \Leftrightarrow A\subseteq B\land A\nsupseteq B\\
& \Leftrightarrow\forall x\left(x\in A\rightarrow x\notin B\right)\land\exists x\left(x\in B\rightarrow x\notin A\right)
\end{align*}
となる。
ページ情報
タイトル | 集合の相等・部分集合・真部分集合の定義 |
URL | https://www.nomuramath.com/zfzujpke/ |
SNSボタン |