全体集合と補集合の定義
全体集合と補集合の定義
すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
また、\(x\in A\Leftrightarrow x\notin A^{c}\)も成り立つ。
(1)全体集合(普遍集合)
考えている対象全体を全体集合または普遍集合という。(2)補集合
全体集合\(X\)の中で集合\(A\)に含まれない要素全てを集めた集合を\(A\)の補集合といい、\(A^{c}:=X\setminus A\)で表す。すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
また、\(x\in A\Leftrightarrow x\notin A^{c}\)も成り立つ。
全体集合を\(X=\left\{ a,b,c\right\} \)とする。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
ページ情報
タイトル | 全体集合と補集合の定義 |
URL | https://www.nomuramath.com/renj8eqj/ |
SNSボタン |
量化記号(全称命題・存在命題)の分配
\[
\exists x\left(P\left(x\right)\lor Q\left(x\right)\right)\Leftrightarrow\exists xP\left(x\right)\lor\exists xQ\left(x\right)
\]
ガンマ関数の漸化式を更新しました
逆三角関数と逆双曲線関数の対数表示
\[
\Sin^{\bullet}z=-i\Log\left(iz+\sqrt{1-z^{2}}\right)
\]
銅像をいつ倒す?
銅像を90度左右に回転させるだけで全員が部屋に入ったことをどうすれば確認ができるか?