全体集合と補集合の定義
全体集合と補集合の定義
すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
(1)全体集合
考えている対象全体を全体集合いう。(2)補集合
全体集合\(X\)の中で集合\(A\)に含まれない要素全てを集めた集合を\(A\)の補集合といい、\(A^{c}:=X\setminus A\)で表す。すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
全体集合を\(X=\left\{ a,b,c\right\} \)とする。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
ページ情報
タイトル | 全体集合と補集合の定義 |
URL | https://www.nomuramath.com/renj8eqj/ |
SNSボタン |
ブラーマグプタ2平方恒等式
\[
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=\left(ac\pm bd\right)^{2}+\left(ad\mp bc\right)^{2}
\]
実数の上限・下限の別定義
ヘヴィサイドの階段関数同士の変換
\[
H_{a}\left(x\right)=H_{b}\left(x\right)+\left(a-b\right)\delta_{0,x}
\]
チェビシェフ多項式の漸化式
\[
T_{n+1}(x)=2xT_{n}(x)-T_{n-1}(x)
\]