空集合の定義と性質
空集合の定義と性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
(1)
空集合は唯1つ存在する。任意の元\(x\)に対し、\(x\notin\emptyset\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
(1)
空集合が\(\emptyset_{1},\emptyset_{2}\)の2つあり\(\emptyset_{1}\ne\emptyset_{2}\)と仮定する。このとき、任意の集合\(A\)に対し\(\emptyset_{1}\subseteq A\)が成り立つので\(A\)に\(\emptyset_{2}\)を代入すると、\(\emptyset_{1}\subseteq\emptyset_{2}\)となる。
同様に\(\emptyset_{2}\subseteq\emptyset_{1}\)が成り立つ。
これより、\(\emptyset_{1}\subseteq\emptyset_{2}\)かつ\(\emptyset_{2}\subseteq\emptyset_{1}\)なので\(\emptyset_{1}=\emptyset_{2}\)となるので矛盾。
従って、背理法より\(\emptyset_{1}=\emptyset_{2}\)となり、空集合は唯1つ存在する。
ページ情報
タイトル | 空集合の定義と性質 |
URL | https://www.nomuramath.com/z4pn0ulj/ |
SNSボタン |
剰余演算同士の和・差
\[
\mod\left(x,a,b\right)+\mod\left(y,a,b\right)=\mod\left(x+y,a,b\right)+a\mzp_{0,1}\left(b\sgn\left(a\right),b\sgn\left(a\right)+\left|a\right|;\sgn\left(a\right)\left(\mod\left(x,a,b\right)+\mod\left(y,a,b\right)\right)\right)
\]
ヘヴィサイドの階段関数と符号関数の積
\[
\sgn\left(x\right)H_{a}\left(x\right)=H_{0}\left(x\right)
\]
三角関数・双曲線関数の微分
\[
\left(\sin x\right)'=\cos x
\]
[2021年福島大学後期・数学第1問]因数分解
$x^{4}+x^{2}+1+2xy-y^{2}$を因数分解。