空集合は任意の集合の部分集合
空集合は任意の集合の部分集合
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
任意の集合\(A\)に対し\(\emptyset\subseteq A\)が成り立つ。
\(\emptyset\subseteq\emptyset\)や\(A\subseteq A\)も常に成り立つ。
また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
-
\(A=\left\{ a\right\} \)のとき、\(a\in A\)であるが\(\left\{ a\right\} \in A\)ではない。また\(\left\{ a\right\} \subseteq A\)であるが、\(a\subseteq A\)ではない。また任意の集合\(A\)に対し、\(\emptyset\subseteq A\)であるが、\(\emptyset\in A\)ではない。
任意の\(x\in\emptyset\)は常に偽なので、\(\emptyset\subseteq A\Leftrightarrow\forall x\left(x\in\emptyset\rightarrow x\in A\right)\)は真になる。
故に題意は成り立つ。
故に題意は成り立つ。
ページ情報
タイトル | 空集合は任意の集合の部分集合 |
URL | https://www.nomuramath.com/xiaki13l/ |
SNSボタン |
5心と頂点までの距離
\[
\left|AG\right|^{2}=\frac{-a^{2}+2b^{2}+2c^{2}}{9}
\]
[2016年京都大学・数学問2]シンプルな整数問題
$p,q$を素数として$p^{q}+q^{p}$が素数となる全ての値を求めよ。
第1種スターリング数の符号
\[
\left|S_{1}\left(n,k\right)\right|=\left(-1\right)^{n+k}S_{1}\left(n,k\right)
\]
順序同型は同値関係
順序同型は同値関係(反射律・対称律・推移律)を満たす。