集合と要素の定義
集合と要素の定義
いくつかのものが集まったものを集合という。
その集合を構成する1つ1つのものを要素や元という。
集合\(A\)に要素\(a\)が含まれるとき、「\(a\)は\(A\)に属す」、「\(a\)は\(A\)の要素」、「\(A\)は\(a\)を要素に持つ」などといい、\(a\in A\)または\(A\ni a\)で表す。
集合\(A\)に要素\(a\)が含まれないときは、\(a\notin A\)で表す。
いくつかのものが集まったものを集合という。
その集合を構成する1つ1つのものを要素や元という。
集合\(A\)に要素\(a\)が含まれるとき、「\(a\)は\(A\)に属す」、「\(a\)は\(A\)の要素」、「\(A\)は\(a\)を要素に持つ」などといい、\(a\in A\)または\(A\ni a\)で表す。
集合\(A\)に要素\(a\)が含まれないときは、\(a\notin A\)で表す。
\(a\in A\)を\(A\)は\(a\)を含むと表し、\(B\subseteq A\)も\(A\)は\(B\)を含むと表すと分かりにくいので、\(a\)は\(A\)を要素に持つ、\(A\)は\(B\)を包含するなどと区別するほうが分かりやすくて良い。
ページ情報
タイトル | 集合と要素の定義 |
URL | https://www.nomuramath.com/j6u5hx0k/ |
SNSボタン |
冪関数と指数関数の積の積分
\[
\int z^{\alpha}e^{\beta z}dz=\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C
\]
sinc関数のn乗広義積分
\[
\int_{0}^{\infty}sinc^{n}(x)dx=\frac{\pi}{2^{n+1}(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\sgn(n-2k)
\]
クヌースの矢印表記の定義
\[
a\uparrow^{n}b:=\begin{cases}
ab & n=0\\
1 & n\geq1\;\land\;b=0\\
\underbrace{a\uparrow^{n-1}a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b\;copies\;of\;a} & otherwise
\end{cases}
\]
論理演算の基本
\[
P\lor\left(P\land Q\right)\Leftrightarrow P
\]