集合と要素の定義
集合と要素の定義
いくつかのものが集まったものを集合という。
その集合を構成する1つ1つのものを要素や元という。
集合\(A\)に要素\(a\)が含まれるとき、「\(a\)は\(A\)に属す」、「\(a\)は\(A\)の要素」、「\(A\)は\(a\)を要素に持つ」などといい、\(a\in A\)または\(A\ni a\)で表す。
集合\(A\)に要素\(a\)が含まれないときは、\(a\notin A\)で表す。
ページ情報
タイトル | 集合と要素の定義 |
URL | https://www.nomuramath.com/j6u5hx0k/ |
SNSボタン |
多重階乗の階乗表示
\[
\left(qn+r\right)!_{n}=r!_{n}n^{q}\frac{\left(q+\frac{r}{n}\right)!}{\left(\frac{r}{n}\right)!}
\]
位相空間での内部・外部・境界・閉包・導集合孤立点全体の集合の定義
\[
\exists U_{x}\in\mathcal{O},U_{x}\subseteq A
\]
チェビシェフ多項式の積表示
\[
T_{n}(x)=2^{n}\prod_{k=1}^{n}\left(x-\cos\left(\frac{2k-1}{2n}\pi\right)\right)
\]
(*)分母に1乗と2乗ルートの積分
\[
\int\frac{1}{\left(z+\alpha\right)\sqrt{z^{2}+\beta}}dz=\frac{\tanh^{\bullet}\left(\frac{\alpha z-\beta}{\sqrt{\alpha^{2}+\beta}\sqrt{\beta+z^{2}}}\right)}{\sqrt{\alpha^{2}+\beta}}
\]