集合と要素の定義
集合と要素の定義
いくつかのものが集まったものを集合という。
その集合を構成する1つ1つのものを要素や元という。
集合\(A\)に要素\(a\)が含まれるとき、「\(a\)は\(A\)に属す」、「\(a\)は\(A\)の要素」、「\(A\)は\(a\)を要素に持つ」などといい、\(a\in A\)または\(A\ni a\)で表す。
集合\(A\)に要素\(a\)が含まれないときは、\(a\notin A\)で表す。
いくつかのものが集まったものを集合という。
その集合を構成する1つ1つのものを要素や元という。
集合\(A\)に要素\(a\)が含まれるとき、「\(a\)は\(A\)に属す」、「\(a\)は\(A\)の要素」、「\(A\)は\(a\)を要素に持つ」などといい、\(a\in A\)または\(A\ni a\)で表す。
集合\(A\)に要素\(a\)が含まれないときは、\(a\notin A\)で表す。
\(a\in A\)を\(A\)は\(a\)を含むと表し、\(B\subseteq A\)も\(A\)は\(B\)を含むと表すと分かりにくいので、\(a\)は\(A\)を要素に持つ、\(A\)は\(B\)を包含するなどと区別するほうが分かりやすくて良い。
ページ情報
タイトル | 集合と要素の定義 |
URL | https://www.nomuramath.com/j6u5hx0k/ |
SNSボタン |
分母にルート同士の和がある総和
\[
\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{28}+\sqrt{29}}+\frac{1}{\sqrt{29}+\sqrt{30}}=?
\]
デルタ関数の定義
\[
\int_{-\infty}^{\infty}f\left(x\right)\delta\left(x\right)dx=f\left(0\right)
\]
ワイエルシュトラスのM判定法(優級数判定法)
ウォリス積分の定義
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta
\]