交わりと互いに素の定義
交わりと互いに素の定義
集合\(A,B\)がある。
\(A\cap B\ne\emptyset\)のとき、「\(A\)と\(B\)は交わる」という。
\(A\cap B=\emptyset\)のとき、「\(A\)と\(B\)は交わらない」または「\(A\)と\(B\)は互いに素」という。
\(\left\{ a,b\right\} \cap\left\{ a,c\right\} =\left\{ a\right\} \ne\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ a,c\right\} \)は交わる。
\(\left\{ a,b\right\} \cap\left\{ c,d\right\} =\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ c,d\right\} \)は互いに素となる。
ページ情報
タイトル | 交わりと互いに素の定義 |
URL | https://www.nomuramath.com/axa1b1jx/ |
SNSボタン |
クロネッカーのデルタの表示
\[
\delta_{mn}=\sum_{k=0}^{n}\frac{(-1)^{k+m}}{(m-k)!(k-n)!}
\]
逆数の偏角と対数
\[
\Arg z^{-1}=-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)}
\]
3つのうち1つを消したものとの包含関係
\[
P\lor\left(Q\land R\right)\Rightarrow P\lor Q
\]
ヘヴィサイドの階段関数と符号関数・絶対値
\[
H_{\frac{1}{2}}\left(\pm x\right)=\frac{1\pm\sgn x}{2}
\]