交わりと互いに素の定義
交わりと互いに素の定義
集合\(A,B\)がある。
\(A\cap B\ne\emptyset\)のとき、「\(A\)と\(B\)は交わる」という。
\(A\cap B=\emptyset\)のとき、「\(A\)と\(B\)は交わらない」または「\(A\)と\(B\)は互いに素」という。
集合\(A,B\)がある。
\(A\cap B\ne\emptyset\)のとき、「\(A\)と\(B\)は交わる」という。
\(A\cap B=\emptyset\)のとき、「\(A\)と\(B\)は交わらない」または「\(A\)と\(B\)は互いに素」という。
\(\left\{ a,b\right\} \cap\left\{ a,c\right\} =\left\{ a\right\} \ne\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ a,c\right\} \)は交わる。
\(\left\{ a,b\right\} \cap\left\{ c,d\right\} =\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ c,d\right\} \)は互いに素となる。
\(\left\{ a,b\right\} \cap\left\{ c,d\right\} =\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ c,d\right\} \)は互いに素となる。
ページ情報
タイトル | 交わりと互いに素の定義 |
URL | https://www.nomuramath.com/axa1b1jx/ |
SNSボタン |
優先順位を変更したものとの包含関係・同値関係
\[
P\lor\left(Q\land R\right)\Leftarrow\left(P\lor Q\right)\land R
\]
対数と偏角の基本
\[
\log z=\Log z+\log1
\]
パスカルの法則の一般形
\[
C\left(x+n,y+n\right)=\sum_{k=0}^{n}C\left(n,k\right)C\left(x,y+k\right)
\]
距離空間での連続を開近傍を使って表現
\[
\forall\epsilon>0,\exists\delta>0,f\left(U_{\delta}\left(a\right)\right)\subseteq U_{\epsilon}\left(f\left(a\right)\right)
\]