冪集合の定義
冪集合の定義
ある集合\(A\)の部分集合全体の集合族を冪集合といい\(2^{A}\)で表す。
ある集合\(A\)の部分集合全体の集合族を冪集合といい\(2^{A}\)で表す。
(1)
\(A\in2^{A}\)は成り立つが、一般に\(A\nsubseteq2^{A}\)であるので注意。また\(\emptyset\in2^{A}\)と\(\emptyset\subseteq2^{A}\)はどちらも成り立つ。
(2)
\(A=\left\{ a,b\right\} \)のとき\(2^{A}=\left\{ \emptyset,\left\{ a\right\} ,\left\{ b\right\} ,\left\{ a,b\right\} \right\} \)なので\(A\in2^{A}\)は成り立つが、\(A\subseteq2^{A}\)は成り立たないので\(A\nsubseteq2^{A}\)となる。また冪集合は必ず空集合を含むので\(\emptyset\in2^{A}\)が成り立ち、空集合は任意の集合の部分集合であるので、\(\emptyset\subseteq2^{A}\)が成り立つ。
(3)
空集合の冪集合は\(2^{\emptyset}=\left\{ \emptyset\right\} \)となる。何故なら\(B\subseteq A\leftrightarrow B\in2^{A}\)なので\(A=\emptyset\)とすると、\(B\subseteq\emptyset\leftrightarrow B\in2^{\emptyset}\)となり、\(\emptyset\)の部分集合は\(\emptyset\)のみなので\(B=\emptyset\)とすると\(\emptyset\in2^{\emptyset}\)となり、\(\left\{ \emptyset\right\} =2^{\emptyset}\)となる。
また、
\begin{align*} 2^{2^{\emptyset}} & =2^{\left\{ \emptyset\right\} }\\ & =\left\{ \emptyset,\left\{ \emptyset\right\} \right\} \end{align*} \begin{align*} 2^{2^{2^{\emptyset}}} & =2^{\left\{ \emptyset,\left\{ \emptyset\right\} \right\} }\\ & =\left\{ \emptyset,\left\{ \emptyset\right\} ,\left\{ \left\{ \emptyset\right\} \right\} ,\left\{ \emptyset,\left\{ \emptyset\right\} \right\} \right\} \end{align*} となる。
(4)
1元集合\(\left\{ a\right\} \)の冪集合は\(2^{\left\{ a\right\} }=\left\{ \emptyset,\left\{ a\right\} \right\} \)となる。ページ情報
タイトル | 冪集合の定義 |
URL | https://www.nomuramath.com/v93jlx3c/ |
SNSボタン |
逆三角関数と逆双曲線関数の冪乗積分漸化式
\[
\int\sin^{\bullet,n}xdx=x\sin^{\bullet,n}x+n\sqrt{1-x^{2}}\sin^{\bullet,n-1}x-n(n-1)\int\sin^{\bullet,n-2}xdx
\]
『収束列と閉集合・閉包・稠密との関係』を更新しました。
スターリング数の母関数
\[
\sum_{n=0}^{\infty}S_{1}\left(n,k\right)\frac{x^{n}}{n!}=\frac{\log^{k}\left(1+x\right)}{k!}
\]
ルートiが無限に続くといくつになる?
\[
\sqrt{i\sqrt{i\sqrt{i\sqrt{\cdots}}}}=?
\]