外延的記法と内包的記法
外延的記法と内包的記法
例:
\[ \left\{ a,b,c\right\} \]
例:
\[ \left\{ x;P\left(x\right)\right\} \] \[ \left\{ x;x\text{は5以下の自然数}\right\} \]
(1)外延(がいえん)的記法
集合の要素を全て列挙する方法を外延的記法という。例:
\[ \left\{ a,b,c\right\} \]
(2)内包(ないほう)的記法
集合の要素を条件により記載する方法を内包的記法という。例:
\[ \left\{ x;P\left(x\right)\right\} \] \[ \left\{ x;x\text{は5以下の自然数}\right\} \]
\(\left\{ x;x\in\mathbb{N},P\left(x\right)\right\} \)でも\(\left\{ x\in\mathbb{N};P\left(x\right)\right\} \)でも同じである。
\(\left\{ a,b\right\} =\left\{ b,a\right\} \)のように順序は問わない。
\(\left\{ a,a,a\right\} =\left\{ a,a\right\} =\left\{ a\right\} \)のように同じ元が2つ以上あっても1つあるのと同じである。
\(x\)が集合\(A\)の元で条件\(B\left(x\right)\)を満たすとき、\(\left\{ x;x\in A,B\left(x\right)\right\} =\left\{ x\in A;B\left(x\right)\right\} \)となる。
\(\left\{ a,b\right\} =\left\{ b,a\right\} \)のように順序は問わない。
\(\left\{ a,a,a\right\} =\left\{ a,a\right\} =\left\{ a\right\} \)のように同じ元が2つ以上あっても1つあるのと同じである。
\(x\)が集合\(A\)の元で条件\(B\left(x\right)\)を満たすとき、\(\left\{ x;x\in A,B\left(x\right)\right\} =\left\{ x\in A;B\left(x\right)\right\} \)となる。
ページ情報
| タイトル | 外延的記法と内包的記法 |
| URL | https://www.nomuramath.com/y0p39z8p/ |
| SNSボタン |
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
実フーリエ級数
\[
f\left(x\right)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n}\cos\left(nx\right)+b_{n}\sin\left(nx\right)\right)
\]
三角関数の部分分数展開
\[
\pi\tan\pi x =-\sum_{k=-\infty}^{\infty}\frac{1}{x+\frac{1}{2}+k}
\]
[python]for文の基本

