包含関係は半順序関係
包含関係は半順序関係
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
\(A,B,C\)を集合とする。
反射律
\(\forall x\left(x\in A\rightarrow x\in A\right)\Rightarrow A\subseteq A\)なので\(A\subseteq A\)となり反射律を満たす。反対称律
\(A=B\Leftrightarrow A\subseteq B\land B\subseteq A\)なので\(A\subseteq B\land B\subseteq A\Rightarrow A=B\)となり、反対称律を満たす。推移律
\begin{align*} A\subseteq B\land B\subseteq C & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\forall x\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left\{ \left(\lnot x\in A\lor x\in B\right)\land\left(\lnot x\in B\lor x\in C\right)\right\} \\ & \Rightarrow\forall x\left\{ \lnot x\in A\lor x\in B\lor\lnot x\in B\lor x\in C\right\} \\ & \Leftrightarrow\forall x\left\{ \lnot x\in A\lor x\in C\right\} \\ & \Rightarrow\forall x\left(x\in A\rightarrow x\in C\right)\\ & \Leftrightarrow A\subseteq C \end{align*} となるので\(A\subseteq B\land B\subseteq C\Rightarrow A\subseteq C\)より、推移律を満たす。-
これらより、反射律・反対称律・推移律を満たすので半順序関係を満たす。ページ情報
タイトル | 包含関係は半順序関係 |
URL | https://www.nomuramath.com/v6yqewcp/ |
SNSボタン |
正接・双曲線正接の総和展開
\[
\tan\pi z=\frac{2z}{\pi}\sum_{k=1}^{\infty}\frac{1}{\left(k-\frac{1}{2}\right)^{2}-z^{2}}
\]
(*)ベルヌーイ数の総和と漸化式
\[
\delta_{0,n}=\sum_{k=0}^{n}C\left(n+1,k\right)B_{k}
\]
総和と総乗の逆順
\[
\sum_{k=a}^{b}f\left(k\right)=\sum_{k=-b}^{-a}f\left(-k\right)
\]
冪乗の性質
\[
\pv\alpha^{\beta}\pv\alpha^{\gamma}=\pv\alpha^{\beta+\gamma}
\]