カテゴリー: 実数論
リーマン・ルベーグの定理
\[
\lim_{k\rightarrow\infty}\int_{a}^{b}f\left(x\right)e^{ikx}dx=0
\]
項別積分と項別微分
\[
\sum_{k=1}^{\infty}\int_{a}^{b}f_{k}\left(x\right)dx=\int_{a}^{b}\sum_{k=1}^{\infty}f_{k}\left(x\right)dx
\]
極限と積分・微分の順序変更
\[
\lim_{n\rightarrow\infty}\int_{a}^{b}f_{n}\left(x\right)dx=\int_{a}^{b}\lim_{n\rightarrow\infty}f_{n}\left(x\right)dx
\]
各点収束・一様収束・広義一様収束の包含関係
\[
\text{一様収束}\Rightarrow\text{各点収束}
\]
一様コーシー列・一様収束列の定義と性質
\[
\forall\epsilon>0,\exists N\in\mathbb{N},\forall x\in I;\left(N\leq m,n\right)\rightarrow d\left(f_{m}\left(x\right),f_{n}\left(x\right)\right)<\epsilon
\]
各点収束と一様収束と広義一様収束の定義
\[
\lim_{n\rightarrow\infty}\sup_{x\in I}\left|f_{n}\left(x\right)-f\left(x\right)\right|=0
\]
ボルツァーノ・ワイエルシュトラスの定理
有界実数列は収束する部分列を持つ。
上限定理・下限定理・ワイエルシュトラスの定理(公理)
実数全体の空でない部分集合が上に有界ならば上限が存在する。
実数での上界・下界・有界・最大値・最小値の定義
\[
\left(\exists x\in A,\forall a\in A,a\leq x\right)\Leftrightarrow\max A=x
\]
チェザロ平均と上限・下限・上極限・下極限の大小関係
\[
\limsup_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{n}a_{k}\leq\limsup_{n\rightarrow\infty}a_{n}
\]
級数が収束するならチェザロ平均の極限は存在
\[
\exists a\in\left[-\infty,\infty\right],\lim_{n\rightarrow\infty}a_{n}=a\rightarrow\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{n}a_{k}=a
\]
チェザロ総和とチェザロ平均の定義
\[
m_{n}=\frac{1}{n}\sum_{k=1}^{n}a_{n}
\]
上限・下限と上極限・下極限の積の大小関係
\[
\left(\sup_{n\in\mathbb{N}}a_{n}\right)\left(\inf_{n\in\mathbb{N}}b_{n}\right)\leq\sup_{n\in\mathbb{N}}\left(a_{n}b_{n}\right)
\]
上限・下限・最大元・最小元・上極限・下極限の積
\[
\sup_{n\in\mathbb{N}}\left(a_{n}b_{n}\right)\leq\sup_{n\in\mathbb{N}}a_{n}\sup_{n\in\mathbb{N}}b_{n}
\]
上限・下限・最大元・最小元・上極限・下極限の和
\[
\sup_{n\in\mathbb{N}}\left(a_{n}+b_{n}\right)\leq\sup_{n\in\mathbb{N}}a_{n}+\sup_{n\in\mathbb{N}}b_{n}
\]
極限と上極限・下極限との関係
\[
\exists a\in\left[-\infty,\infty\right],\left(\lim_{n\rightarrow\infty}a_{n}=a\leftrightarrow\liminf_{n\rightarrow\infty}a_{n}=\limsup_{n\rightarrow\infty}a_{n}=a\right)
\]
上限・下限・最大元・最小元・上極限・下極限の定数倍
\[
\sup_{n\in\mathbb{N}}\left(ca_{n}\right)=\begin{cases}
c\sup_{n\in\mathbb{N}}\left(a_{n}\right) & c>0\\
c\inf_{n\in\mathbb{N}}\left(a_{n}\right) & c<0\\
0 & c=0
\end{cases}
\]
上限と下限・最大元と最小元・上極限と下極限との関係
\[
\inf_{n\in\mathbb{N}}\left(-a_{n}\right)=-\sup_{n\in\mathbb{N}}\left(a_{n}\right)
\]
実数列の上極限と下極限の定義
\[
\limsup_{n\rightarrow\infty}a_{n}:=\lim_{n\rightarrow\infty}\sup_{k\geq n}a_{k}
\]