各点収束するが一様収束しない例
各点収束するが一様収束しない例
次の関数列は各点収束するが一様収束しない。
次の関数列は各点収束するが一様収束しない。
(1)
\[ f_{n}\left(x\right)=x^{n}\cnd{0\leq x\leq1} \](2)
\[ f_{n}\left(x\right)=nxe^{-nx}\cnd{x\geq0} \](1)
各点収束
\begin{align*} \lim_{n\rightarrow\infty}f_{n}\left(x\right) & =f\left(x\right)\\ & =\begin{cases} 0 & \left(0\leq x<1\right)\\ 1 & \left(x=1\right) \end{cases} \end{align*} となるので各点収束する。一様収束
\(x=1-\frac{1}{n}\)の点を考えると\begin{align*} \lim_{n\rightarrow\infty}f_{n}\left(1-\frac{1}{n}\right) & =\lim_{n\rightarrow\infty}\left(1-\frac{1}{n}\right)^{n}\\ & =\lim_{n\rightarrow\infty}\left(\frac{n-1}{n}\right)^{n}\\ & =\lim_{n\rightarrow\infty}\left(\frac{n}{n-1}\right)^{-n}\\ & =\lim_{n\rightarrow\infty}\left(1+\frac{1}{n-1}\right)^{-n}\\ & =\lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^{-n-1}\\ & =\lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^{-1}\left(1+\frac{1}{n}\right)^{-n}\\ & =\frac{1}{e} \end{align*} となるので
\begin{align*} \lim_{n\rightarrow\infty}\sup_{x\in I}\left|f_{n}\left(x\right)-f\left(x\right)\right| & >\lim_{n\rightarrow\infty}\left|f_{n}\left(1-\frac{1}{n}\right)-f\left(1-\frac{1}{n}\right)\right|\\ & =\frac{1}{e} \end{align*} となり一様収束しない。
(2)
各点収束
\begin{align*} \lim_{n\rightarrow\infty}f_{n}\left(x\right) & =\lim_{n\rightarrow\infty}nxe^{-nx}\\ & =-\lim_{n\rightarrow\infty}e^{-nx}\\ & =0 \end{align*} となるので各点収束する。一様収束
\begin{align*} f_{n}'\left(x\right) & =\left(nxe^{-nx}\right)'\\ & =n\left(1-nx\right)e^{-nx} \end{align*} となり、増減表より\(x=\frac{1}{n}\)で最大になる。この値を使うと、\begin{align*} \lim_{n\rightarrow\infty}\sup_{x\in I}\left|f_{n}\left(x\right)-f\left(x\right)\right| & >\lim_{n\rightarrow\infty}\left|f_{n}\left(\frac{1}{n}\right)-f\left(\frac{1}{n}\right)\right|\\ & =\lim_{n\rightarrow\infty}\left|\frac{1}{e}-0\right|\\ & =\frac{1}{e} \end{align*} となり一様収束しない。
ページ情報
タイトル | 各点収束するが一様収束しない例 |
URL | https://www.nomuramath.com/ughomf1q/ |
SNSボタン |
数列が収束するならば有界
上極限・下極限は存在
極限と積分・微分の順序変更
\[
\lim_{n\rightarrow\infty}\int_{a}^{b}f_{n}\left(x\right)dx=\int_{a}^{b}\lim_{n\rightarrow\infty}f_{n}\left(x\right)dx
\]
条件収束と絶対収束の定義
数列$\left\{ a_{n}\right\} $の各項$a_{n}$の絶対値をとった総和が$\sum_{k=1}^{\infty}\left|a_{n}\right|<\infty$となるとき、$\sum_{k=1}^{\infty}a_{n}$は絶対収束するという。