フルヴィッツ・ゼータ関数の乗法定理
フルヴィッツ・ゼータ関数の乗法定理
フルヴィッツ・ゼータ関数\(\zeta\left(s,q\right)\)は次の乗法定理を満たす。
フルヴィッツ・ゼータ関数\(\zeta\left(s,q\right)\)は次の乗法定理を満たす。
(1)
\[ n^{s}\zeta\left(s,nz\right)=\sum_{k=0}^{n-1}\zeta\left(s,z+\frac{k}{n}\right) \](2)
\[ n^{s}\zeta\left(s\right)=\sum_{k=1}^{n}\zeta\left(s,\frac{k}{n}\right) \]-
\(\zeta\left(s\right)\)はリーマン・ゼータ関数\(s=m\in\mathbb{N}\)のときで考える。
(1)
\begin{align*} n^{m}\zeta\left(m,nz\right) & =n^{m}\frac{\left(-1\right)^{m}}{\left(s-1\right)!}\psi^{\left(m-1\right)}\left(nz\right)\cmt{\because\text{ポリガンマ関数の級数表示}}\\ & =n^{m}\frac{\left(-1\right)^{m}}{\left(m-1\right)!}\left\{ \delta_{1m}\log n+\frac{1}{n^{m}}\sum_{k=0}^{n-1}\psi^{\left(m-1\right)}\left(z+\frac{k}{n}\right)\right\} \cmt{\because\text{ポリガンマ関数の乗法公式}}\\ & =n^{m}\frac{\left(-1\right)^{m}}{\left(m-1\right)!}\left\{ \delta_{1m}\log n+\frac{1}{n^{m}}\sum_{k=0}^{n-1}\left(-1\right)^{m}\left(s-1\right)!\zeta\left(m,z+\frac{k}{n}\right)\right\} \cmt{\because\text{ポリガンマ関数の級数表示}}\\ & =\sum_{k=0}^{n-1}\zeta\left(m,z+\frac{k}{n}\right) \end{align*}(2)
\begin{align*} n^{m}\zeta\left(m\right) & =\left[n^{m}\zeta\left(m,nz\right)\right]_{z=\frac{1}{n}}\\ & =\left[\sum_{k=0}^{n-1}\zeta\left(m,z+\frac{k}{n}\right)\right]_{z=\frac{1}{n}}\\ & =\sum_{k=0}^{n-1}\zeta\left(m,\frac{k+1}{n}\right)\\ & =\sum_{k=1}^{n}\zeta\left(m,\frac{k}{n}\right) \end{align*}ページ情報
タイトル | フルヴィッツ・ゼータ関数の乗法定理 |
URL | https://www.nomuramath.com/ygqhhxxo/ |
SNSボタン |
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]
偶数ゼータの通常型母関数
\[
\sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)
\]
ゼータ関数とイータ関数とガンマ関数
\[
\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}dx
\]