カテゴリー: 数学
位相空間での点列と収束・極限点の定義
\[
\forall U_{x}\in\mathcal{U}_{x},\exists N\in\mathbb{N},N\leq n\rightarrow x_{n}\in U_{x}
\]
集合が同じで位相が異なる空間
$\left(X,\mathcal{O}_{1}\right),\left(X,\mathcal{O}_{2}\right)$が位相空間ならば$\left(X,\mathcal{O}_{1}\cap\mathcal{O}_{2}\right)$も位相空間になる。
ハウスドルフ空間とT1空間の点列の極限点
ハウスドルフ空間ならば、点列の極限点が存在すれば一意的に決まる。
分母にxの20乗がある定積分
\[
\int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx=?
\]
対称な5次方程式
\[
\left(x+y\right)^{5}=x^{5}+y^{5}
\]
量化子(全称命題・存在命題)の順序変更
\[
\exists x\forall y,P\left(x,y\right)\Rightarrow\forall y\exists x,P\left(x,y\right)
\]
量化子(全称命題・存在命題)と空集合
\[
\forall x\in\emptyset,P\left(x\right)\Leftrightarrow\top
\]
量化記号(全称命題・存在命題)の分配
\[
\exists x\left(P\left(x\right)\lor Q\left(x\right)\right)\Leftrightarrow\exists xP\left(x\right)\lor\exists xQ\left(x\right)
\]
存在命題(論理和)と全称命題(論理積)の順序変更
\[
\exists x\in X,\forall y\in Y,P\left(x,y\right)\Rightarrow\forall y\in Y,\exists x\in X,P\left(x,y\right)
\]
全称命題と存在命題の否定と部分否定・全否定
\[
\lnot\forall x,P\left(x\right)\Leftrightarrow\exists x,\lnot P\left(x\right)
\]
量化記号(全称命題・存在命題)の定義
\[
\forall x\in X,P\left(x\right)\Leftrightarrow\forall x,x\in X\rightarrow P\left(x\right)
\]
1=2の証明
この証明はどこが間違えてる?