矩形関数の定義
矩形関数の定義
矩形(くけい)関数は次で定義される。
\[ \mathrm{rect}\left(x\right):=\begin{cases} 1 & \left|x\right|<\frac{1}{2}\\ \frac{1}{2} & \left|x\right|=\frac{1}{2}\\ 0 & \frac{1}{2}<\left|x\right| \end{cases} \] \(\mathrm{rect}\left(\pm\frac{1}{2}\right)\)は\(\frac{1}{2}\)以外にも\(0,1\)か未定義とすることもあります。

矩形(くけい)関数は次で定義される。
\[ \mathrm{rect}\left(x\right):=\begin{cases} 1 & \left|x\right|<\frac{1}{2}\\ \frac{1}{2} & \left|x\right|=\frac{1}{2}\\ 0 & \frac{1}{2}<\left|x\right| \end{cases} \] \(\mathrm{rect}\left(\pm\frac{1}{2}\right)\)は\(\frac{1}{2}\)以外にも\(0,1\)か未定義とすることもあります。
短型(たんけい)関数ではなく矩形(くけい)関数です。
\(x\)軸で囲まれる面積は1、すなわち\(\int_{-\frac{1}{2}}^{\frac{1}{2}}\text{tri}\left(x\right)dx=1\)となります。
\(x\)軸で囲まれる面積は1、すなわち\(\int_{-\frac{1}{2}}^{\frac{1}{2}}\text{tri}\left(x\right)dx=1\)となります。
ページ情報
タイトル | 矩形関数の定義 |
URL | https://www.nomuramath.com/ftjk5en2/ |
SNSボタン |
ウォリス積分の同表示
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta
\]
オイラーの規準
\[
QR(a,p)\overset{p}{\equiv}a^{\frac{p-1}{2}}
\]
分母に正接がある関数の定積分
\[
\int_{0}^{\frac{\pi}{2}}\frac{x}{\tan x}dx=?
\]
ソフィー・ジェルマンの恒等式
\[
a^{4}+4b^{4}=\left(a^{2}+2ab+2b^{2}\right)\left(a^{2}-2ab+2b^{2}\right)
\]