ヘヴィサイド関数と符号
ヘヴィサイド関数と符号
ヘヴィサイド関数\(H_{c}\left(x\right)\)は次を満たす。
ヘヴィサイド関数\(H_{c}\left(x\right)\)は次を満たす。
(1)
\[ H_{c}\left(x\right)f\left(x\right)=H_{c}\left(x\right)f\left(\left|x\right|\right) \](2)
\[ H_{c}\left(x\right)f\left(-x\right)=H_{c}\left(x\right)f\left(-\left|x\right|\right) \](3)
\[ H_{c}\left(x\right)f\left(\pm x\right)=H_{c}\left(x\right)f\left(\pm\left|x\right|\right) \](4)
\[ H_{c}\left(\pm x\right)f\left(x\right)=H_{c}\left(\pm x\right)f\left(\pm\left|x\right|\right) \](1)
\begin{align*} H_{c}\left(x\right)f\left(x\right) & =\begin{cases} H_{c}\left(x\right)f\left(\left|x\right|\right) & 0<x\\ H_{c}\left(x\right)f\left(\left|x\right|\right) & x<0 \end{cases}\\ & =H_{c}\left(x\right)f\left(\left|x\right|\right) \end{align*}(2)
\begin{align*} H_{c}\left(x\right)f\left(-x\right) & =\begin{cases} H_{c}\left(x\right)f\left(-\left|x\right|\right) & 0<x\\ H_{c}\left(x\right)f\left(-\left|x\right|\right) & x<0 \end{cases}\\ & =H_{c}\left(x\right)f\left(-\left|x\right|\right) \end{align*}(3)
(1)(2)より、\[ H_{c}\left(x\right)f\left(\pm x\right)=H_{c}\left(x\right)f\left(\pm\left|x\right|\right) \] が成り立つ。
(4)
(3)より、\(H_{c}\left(x\right)f\left(\pm x\right)=H_{c}\left(x\right)f\left(\pm\left|x\right|\right)\)で\(x\rightarrow\pm x\)とすると、\[ H_{c}\left(\pm x\right)f\left(x\right)=H_{c}\left(\pm x\right)f\left(\pm\left|x\right|\right) \] となるので与式は成り立つ。
ページ情報
| タイトル | ヘヴィサイド関数と符号 |
| URL | https://www.nomuramath.com/hsna6lsm/ |
| SNSボタン |
ヘヴィサイドの階段関数とクロネッカーのデルタの関係
\[
H_{a}\left(n\right)-H_{b}\left(n-1\right)=a\delta_{0,n}+\left(1-b\right)\delta_{1,n}
\]
ヘヴィサイドの階段関数と絶対値・符号関数
\[
H_{a}\left(\left|c\right|x\right)=H_{a}\left(x\right)
\]
ヘヴィサイドの階段関数と符号関数の関係
\[
H_{a}\left(x\right)=\frac{\sgn\left(x\right)+1}{2}+\left(a-\frac{1}{2}\right)\delta_{0,x}
\]
ヘヴィサイドの階段関数と符号関数の積
\[
\sgn\left(x\right)H_{a}\left(x\right)=H_{0}\left(x\right)
\]

