三角関数 2020年12月9日 三角関数(双曲線関数)の対数とリーマン・ゼータ関数 \[ \log\left(\sin\left(\pi x\right)\right)=\log\left(\pi x\right)-\sum_{k=1}^{\infty}\frac{\zeta\left(2k\right)}{k}x^{2k} \]
ガンマ関数 2020年12月7日 ガンマ関数の対数とリーマン・ゼータ関数 \[ \log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k} \]
ゼータ関数 2020年12月5日 ゼータ関数の交代級数 \[ \sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2} \]
問題 2020年12月3日 tanの立方根の積分 \[ \int\sqrt[3]{\tan x}dx=\frac{1}{4}\log\left(\tan^{\frac{4}{3}}x-\tan^{\frac{2}{3}}x+1\right)+\frac{\sqrt{3}}{2}\tan^{\circ}\left(\frac{2\tan^{\frac{2}{3}}x-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left(\tan^{\frac{2}{3}}x+1\right)+C \]
問題 2020年12月1日 tanの平方根の積分 \[ \int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\circ}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\circ}\left(\sqrt{2\tan x}+1\right)+C \]
ゼータ関数 2020年11月29日 ζ(4k)の総和 \[ \sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi \]
ゼータ関数 2020年11月26日 偶数ゼータの通常型母関数 \[ \sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right) \]