微分と積分の関係
微分と積分の関係
\(ff^{\bullet}\left(a\right)=a\)が成り立つとき、
\[ f\left(x\right)=\int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx-a \]
\begin{align*} \int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx & =\left[f\left(x\right)\right]_{x=f^{\bullet}\left(a\right)}^{x=x}\\ & =f(x)-ff^{\bullet}\left(a\right)\\ & =f\left(x\right)-a \end{align*}
これより、与式は成り立つ。
ページ情報
タイトル | 微分と積分の関係 |
URL | https://www.nomuramath.com/dqpk99jx/ |
SNSボタン |
逆関数の微分
\[
\frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1}
\]
微分形接触型積分
\[
\int f'(g(x))g'(x)dx=f(g(x))
\]
微分・原始関数・定積分・不定積分の定義
\[
\frac{df(x)}{dx}=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
\]
基本関数の微分
\[
\left(a^{x}\right)'=a^{x}\log a
\]