3角関数の関数の定積分

3角関数の関数の定積分
次の定積分が成り立つ。

(1)

\[ \int_{0}^{\frac{\pi}{2}}f\left(\cos x\right)dx=\int_{0}^{\frac{\pi}{2}}f\left(\sin x\right)dx \]

(2)

\[ \int_{0}^{\pi}xf\left(\sin x\right)dx=\frac{\pi}{2}\int_{0}^{\pi}f\left(\sin x\right)dx \]

(1)

\begin{align*} \int_{0}^{\frac{\pi}{2}}f\left(\cos x\right)dx & =\int_{0}^{\frac{\pi}{2}}f\left(\cos\left(\frac{\pi}{2}-x\right)\right)dx\\ & =\int_{0}^{\frac{\pi}{2}}f\left(\sin x\right)dx \end{align*}

(2)

\begin{align*} \int_{0}^{\pi}xf\left(\sin x\right)dx & =\int_{0}^{\pi}\left(\pi-x\right)f\left(\sin\left(\pi-x\right)\right)dx\cmt{x\rightarrow\pi-x}\\ & =\int_{0}^{\pi}\left(\pi-x\right)f\left(\sin x\right)dx\\ & =\pi\int_{0}^{\pi}f\left(\sin x\right)dx-\int_{0}^{\pi}xf\left(\sin x\right)dx\\ & =\frac{\pi}{2}\int_{0}^{\pi}f\left(\sin x\right)dx \end{align*}

ページ情報
タイトル
3角関数の関数の定積分
URL
https://www.nomuramath.com/hotxaiee/
SNSボタン