カテゴリー: 関数

逆数の多重対数関数

\[ \Li_{n}\left(\frac{1}{z}\right)=\left(-1\right)^{n+1}\Li_{n}\left(z\right)+\left(1+\left(-1\right)^{n}\right)\zeta\left(n\right)+\left(-1\right)^{n}\sum_{k=0}^{\left\lfloor \frac{n-3}{2}\right\rfloor }\left\{ 2\zeta\left(2\left(k+1\right)\right)\frac{\Log^{n-2\left(k+1\right)}z}{\left(n-2\left(k+1\right)\right)!}\right\} +\left(-1\right)^{n+1}\frac{\Log^{n}z}{n!}+\left(-1\right)^{n+1}\frac{\Log^{n-1}z}{\left(n-1\right)!}\left(\Log\left(1-z\right)-\Log\left(z-1\right)\right) \]

一般化超幾何関数の微分と積分

\[ \frac{d}{dx}F\left(\boldsymbol{a};\boldsymbol{b};x\right)=\frac{\prod_{i=1}^{\dim\boldsymbol{a}}a_{i}}{\prod_{j=1}^{\dim\boldsymbol{b}}b_{j}}F\left(\boldsymbol{a}+\boldsymbol{1};\boldsymbol{b}+\boldsymbol{1};x\right) \]