独立と無相関の定義
\(X,Y\)を確率変数とする。
(1)独立
\[ P\left(X=x,Y=y\right)=P(X=x)P(Y=y) \] のとき独立という。(2)無相関
\[ Cov(X,Y)=0 \] のとき無相関という。ページ情報
タイトル | 独立と無相関の定義 |
URL | https://www.nomuramath.com/w7lzj5zq/ |
SNSボタン |
チェビシェフの不等式
\[
P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}}
\]
大数の法則
\[
\lim_{n\rightarrow\infty}P(\left|Y_{n}-\mu\right|\geq\epsilon)=0
\]
相加平均・相乗平均・調和平均・一般化平均の定義
\[
\mu_{A}=\frac{1}{n}\sum_{k=1}^{n}x_{k}
\]
マルコフの不等式
\[
P\left(\left|X\right|\geq\epsilon\right)\leq\frac{E\left(\left|X\right|\right)}{\epsilon}
\]