独立と無相関の定義
\(X,Y\)を確率変数とする。
(1)独立
\[ P\left(X=x,Y=y\right)=P(X=x)P(Y=y) \] のとき独立という。(2)無相関
\[ Cov(X,Y)=0 \] のとき無相関という。ページ情報
タイトル | 独立と無相関の定義 |
URL | https://www.nomuramath.com/w7lzj5zq/ |
SNSボタン |
無相関のときに成り立つ関係
\[
E(XY)=E(X)E(Y)
\]
大数の法則
\[
\lim_{n\rightarrow\infty}P(\left|Y_{n}-\mu\right|\geq\epsilon)=0
\]
期待値・分散・共分散などの定義
\[
E(X)=\int_{-\infty}^{\infty}xP(x)dx
\]
相関係数の基本的性質
\[
\rho(X,aY+b)=\rho(X,Y)
\]