対角集合の定義
対角集合の定義
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
\(X=\left\{ a,b\right\} \)とすると\(\Delta_{X}=\left\{ \left(a,a\right),\left(b,b\right)\right\} \)となる。
ページ情報
| タイトル | 対角集合の定義 |
| URL | https://www.nomuramath.com/stzx0gqp/ |
| SNSボタン |
固有方程式・固有値・固有ベクトルと固有空間
\[
W\left(\lambda\right)=\ker\left(A-\lambda I\right)
\]
固有多項式・最小多項式の性質
固有多項式・最小多項式ともに固有値を代入すると0になる。
固有多項式と最小多項式の定義
\[
p_{A}\left(\lambda\right)=\det\left(\lambda I-A\right)
\]
対角行列の性質
\[
\diag\left(a_{1},a_{2},\cdots,a_{n}\right)\diag\left(b_{1},b_{2},\cdots,b_{n}\right)=\diag\left(a_{1}b_{1},a_{2}b_{2},\cdots,a_{n}b_{n}\right)
\]

