対角集合の定義
対角集合の定義
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
\(X=\left\{ a,b\right\} \)とすると\(\Delta_{X}=\left\{ \left(a,a\right),\left(b,b\right)\right\} \)となる。
ページ情報
タイトル | 対角集合の定義 |
URL | https://www.nomuramath.com/stzx0gqp/ |
SNSボタン |
三角関数と双曲線関数の積和公式と和積公式
\[ \sin\alpha\cos\beta=\frac{1}{2}\left\{ \sin(\alpha+\beta)+\sin(\alpha-\beta)\right\}
\]
距離空間での開集合と閉集合の定義
\[
\forall x\in A,\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
パスカルの法則
\[
C(x+1,y+1)=C(x,y+1)+C(x,y)
\]
有理数全体の集合
\[
f\left(x\right)=\frac{1}{\left\lfloor x\right\rfloor +1-\left\{ x\right\} }
\]