パスカルの法則
パスカルの法則
(1)パスカルの法則
\[ C(x+1,y+1)=C(x,y+1)+C(x,y) \]
(2)パスカルの法則の差
\[ C\left(x-1,y\right)-C\left(x-1,y-1\right)=\frac{x-2y}{x}C\left(x,y\right) \]
(1)
\begin{align*} C(x+1,y+1) & =\frac{(x+1)!}{(y+1)!(x-y)!}\\ & =\frac{x+1}{y+1}\frac{x!}{y!(x-y)!}\\ & =\left(\frac{x-y}{y+1}+1\right)\frac{x!}{y!(x-y)!}\\ & =\frac{x!}{(y+1)!(x-y-1)!}+\frac{x!}{y!(x-y)!}\\ & =C(x,y+1)+C(x,y) \end{align*}
(2)
\begin{align*} C\left(x-1,y\right)-C\left(x-1,y-1\right) & =\frac{x-y}{x}C\left(x,y\right)-\frac{y}{x}C\left(x,y\right)\\ & =\frac{x-2y}{x}C\left(x,y\right) \end{align*}
ページ情報
タイトル | パスカルの法則 |
URL | https://www.nomuramath.com/bwlu1blq/ |
SNSボタン |
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]
2項係数の逆数の差分
\[
C^{-1}(k+j+1,j+1)=\frac{j+1}{j}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right)
\]
2項係数の微分
\[
\frac{d}{dx}C(x,y) =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)
\]