ライプニッツ級数
\[
\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4}
\]
が成り立つ。
\(|x|<1\)を考えると、
\begin{align*}
\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1} & =\int_{0}^{x}\sum_{n=0}^{\infty}(-1)^{n}x^{2n}dx\\
& =\int_{0}^{x}\frac{1}{1+x^{2}}dx\\
& =[\arctan x]_{0}^{x}\\
& =\arctan x
\end{align*}
\(x=1\)のとき、交項級数のライプニッツ定理とアーベルの連続性定理より、
\[
\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4}
\]
が成り立つ。
ページ情報
タイトル | ライプニッツ級数 |
URL | https://www.nomuramath.com/s04t0d5m/ |
SNSボタン |
漸化式の基本
\[
a_{n+1}=a_{n}+d
\]
ウォリス積分の同表示
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta
\]
ガンマ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\frac{\Gamma\left(n\right)}{\Gamma\left(n+\frac{1}{2}\right)}=1
\]
コーシーの関数方程式と関数方程式の基本
\[
f(x+y)=f(x)+f(y)
\]