対数の基本公式
(1)対数の和
\[ \log M+\log N=\log MN \](2)べき乗の対数
\[ \log M^{r}=r\log M \](3)底の変換
\[ \log_{a}b=\frac{\log_{c}b}{\log_{c}a} \](4)底と真数の交換
\[ \log_{a}b=\frac{1}{\log_{b}a} \](1)
\begin{align*} \log M+\log N & =\log\left(\exp(\log M+\log N)\right)\\ & =\log\left(\exp(\log M)\exp(\log N)\right)\\ & =\log\left(MN\right) \end{align*}(2)
\begin{align*} \log M^{r} & =\log\exp^{r}(\log M)\\ & =\log\exp(r\log M)\\ & =r\log M \end{align*}(3)
\begin{align*} \log_{a}b & =\log_{a}c^{\log_{c}b}\\ & =\log_{a}c^{\log_{c}a\frac{\log_{c}b}{\log_{c}a}}\\ & =\log_{a}a^{\frac{\log_{c}b}{\log_{c}a}}\\ & =\frac{\log_{c}b}{\log_{c}a} \end{align*}(4)
\begin{align*} \log_{a}b & =\frac{\log_{b}b}{\log_{b}a}\\ & =\frac{1}{\log_{b}a} \end{align*}ページ情報
タイトル | 対数の基本公式 |
URL | https://www.nomuramath.com/oclglzfn/ |
SNSボタン |
ウォリス積分の値
\[
\int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2}
\]
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
ベッセル関数のポアソン積分表示
\[
J_{\nu}(z)=\frac{1}{\sqrt{\pi}\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{z}{2}\right)^{\nu}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{izt}dt
\]
ラクランジュの未定乗数法
\[
F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right)
\]