対数の基本公式
(1)対数の和
\[ \log M+\log N=\log MN \](2)べき乗の対数
\[ \log M^{r}=r\log M \](3)底の変換
\[ \log_{a}b=\frac{\log_{c}b}{\log_{c}a} \](4)底と真数の交換
\[ \log_{a}b=\frac{1}{\log_{b}a} \](1)
\begin{align*} \log M+\log N & =\log\left(\exp(\log M+\log N)\right)\\ & =\log\left(\exp(\log M)\exp(\log N)\right)\\ & =\log\left(MN\right) \end{align*}(2)
\begin{align*} \log M^{r} & =\log\exp^{r}(\log M)\\ & =\log\exp(r\log M)\\ & =r\log M \end{align*}(3)
\begin{align*} \log_{a}b & =\log_{a}c^{\log_{c}b}\\ & =\log_{a}c^{\log_{c}a\frac{\log_{c}b}{\log_{c}a}}\\ & =\log_{a}a^{\frac{\log_{c}b}{\log_{c}a}}\\ & =\frac{\log_{c}b}{\log_{c}a} \end{align*}(4)
\begin{align*} \log_{a}b & =\frac{\log_{b}b}{\log_{b}a}\\ & =\frac{1}{\log_{b}a} \end{align*}ページ情報
タイトル | 対数の基本公式 |
URL | https://www.nomuramath.com/oclglzfn/ |
SNSボタン |
ウォリスの公式
\[
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2}
\]
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]
関数の極限
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]