ウォリス積分の定義
\(n\in\mathbb{N}_{0}\)とする。
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
ページ情報
タイトル | ウォリス積分の定義 |
URL | https://www.nomuramath.com/pf2syylr/ |
SNSボタン |
二項係数とベータ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}4^{n}B(n,n)=2\sqrt{\pi}
\]
ウォリス積分の値
\[
\int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2}
\]
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]
ライプニッツ級数