終域が2つの写像全体の集合
終域が2つの写像全体の集合
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
集合\(X\)に対し、\(X\)から\(\left\{ 0,1\right\} \)への写像全体の集合を\(\left\{ 0,1\right\} ^{X}\)で表す。
このとき任意の集合\(X\)に対して\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
任意の\(A\in2^{X}\)に対し写像を指示関数
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
\[ 1_{A}:X\rightarrow\left\{ 0,1\right\} ,x\mapsto\begin{cases} 1 & x\in A\\ 0 & x\notin A \end{cases} \] で定める。
このとき写像
\[ f:2^{X}\rightarrow\left\{ 0,1\right\} ^{X},A\mapsto1_{A} \] は全単射になるので、\(\left|2^{X}\right|=\left|\left\{ 0,1\right\} ^{X}\right|\)となる。
ページ情報
タイトル | 終域が2つの写像全体の集合 |
URL | https://www.nomuramath.com/q1zfp3zc/ |
SNSボタン |
運用による資産推移
\[
x=\begin{cases}
\left(x_{0}+\frac{b}{\log a}\right)a^{t}-\frac{b}{\log a} & a\ne1\\
x_{0}+bt & a=1
\end{cases}
\]
2項係数の特殊な積
\[
C(x,t)C(t,y)=C(x,y)C(x-y,x-t)
\]
距離空間の有界・直径と全有界の定義
\[
\diam\left(A\right):=\sup\left\{ d\left(a,b\right);a,b\in A\right\}
\]
xのx乗がxになる方程式
\[
x^{x}=x,x=?
\]