円周率
円の周長を\(L\)、直径を\(d\)としたとき円周率\(\pi\)を
\[ \pi=\frac{L}{d} \] で定義する。
\[ \pi=\frac{L}{d} \] で定義する。
\[
\pi=2\int_{0}^{1}\frac{1}{\sqrt{1-x^{2}}}dx
\]
が成り立つ。
円周率の定義より、半径\(r\)の円を考えると、
\begin{align*} \pi & =\frac{2}{2r}\int_{-r}^{r}\sqrt{\left(\frac{d}{dx}x\right)^{2}+\left(\frac{d}{dx}\sqrt{r^{2}-x^{2}}\right)^{2}}dx\\ & =\frac{1}{r}\int_{-r}^{r}\sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}}dx\\ & =\frac{2}{r}\int_{0}^{r}\frac{r}{\sqrt{r^{2}-x^{2}}}dx\\ & =2\int_{0}^{1}\frac{1}{\sqrt{1-t^{2}}}dt\qquad\text{(x=rtとおいた)} \end{align*} となる。これより与式は成り立つ。
\begin{align*} \pi & =\frac{2}{2r}\int_{-r}^{r}\sqrt{\left(\frac{d}{dx}x\right)^{2}+\left(\frac{d}{dx}\sqrt{r^{2}-x^{2}}\right)^{2}}dx\\ & =\frac{1}{r}\int_{-r}^{r}\sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}}dx\\ & =\frac{2}{r}\int_{0}^{r}\frac{r}{\sqrt{r^{2}-x^{2}}}dx\\ & =2\int_{0}^{1}\frac{1}{\sqrt{1-t^{2}}}dt\qquad\text{(x=rtとおいた)} \end{align*} となる。これより与式は成り立つ。
ページ情報
タイトル | 円周率 |
URL | https://www.nomuramath.com/agdnktsy/ |
SNSボタン |
ベルヌーイ数とリーマンゼータ関数
\[
B_{2n}=(-1)^{n+1}\frac{2(2n)!}{(2\pi)^{2n}}\zeta(2n)
\]
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]
ウォリス積分の値
\[
\int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2}
\]