2項関係の定義

2項関係の定義
任意の集合\(A,B\)があり、直積集合\(A\times B\)の部分集合\(R\)を\(R\subseteq A\times B\)とすると、順序3つ組\(\left(A,B,R\right)\)を2項関係という。
\(a\in A,b\in B\)とすると、\(\left(a,b\right)\in R\)のとき\(aRb\)は真となり、逆も成り立つ。
すなわち、\(\left(a,b\right)\in R\Leftrightarrow aRb\)となる。
\(aRb\)は\(R\left(a,b\right)\)とも表される。
\(A=\left\{ a,b\right\} ,B=\left\{ c,d\right\} ,R=\left\{ \left(a,c\right),\left(b,d\right)\right\} \)とすると、\(aRc,bRd\)が真となり、\(aRd,bRc\)は偽となる。
大小関係は\(R=\left\{ \left(a,b\right)\in\mathbb{R}^{2};x\leq y\right\} \)となる。

ページ情報
タイトル
2項関係の定義
URL
https://www.nomuramath.com/os07dook/
SNSボタン