ディクソンの等式
ディクソンの等式
\(a,b,c\in\mathbb{N}_{0}\)とする。
\(a,b,c\in\mathbb{N}_{0}\)とする。
(1)
\[ \sum_{k=-a}^{a}(-1)^{k}C(a+b,a+k)C(b+c,b+k)C(c+a,c+k)=\frac{(a+b+c)!}{a!b!c!} \](2)
\[ \sum_{k=-a}^{a}(-1)^{k}C^{3}(2a,a+k)=\frac{(3a)!}{\left(a!\right)^{3}} \](1)
略(2)
(1)で\(a=b=c\)とおくと、\[ \sum_{k=-a}^{a}(-1)^{k}C^{3}(2a,a+k)=\frac{(3a)!}{\left(a!\right)^{3}} \] となるので与式は成り立つ。
ページ情報
タイトル | ディクソンの等式 |
URL | https://www.nomuramath.com/kga8k4q6/ |
SNSボタン |
2項係数の逆数の差分
\[
C^{-1}(k+j+1,j+1)=\frac{j+1}{j}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right)
\]
2項係数の微分
\[
\frac{d}{dx}C(x,y) =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)
\]
2項係数の2乗和
\[
\sum_{j=0}^{m}C^{2}(m,j)=C(2m,m)
\]
飛び飛びの2項定理
\[
\sum_{k=0}^{\infty}C\left(n,2k\right)a^{2k}b^{n-2k}=\frac{1}{2}\left\{ \left(a+b\right)^{n}+\left(-a+b\right)^{n}\right\}
\]