ディクソンの等式

ディクソンの等式

\(a,b,c\in\mathbb{N}_{0}\)とする。

(1)

\[ \sum_{k=-a}^{a}(-1)^{k}C(a+b,a+k)C(b+c,b+k)C(c+a,c+k)=\frac{(a+b+c)!}{a!b!c!} \]

(2)

\[ \sum_{k=-a}^{a}(-1)^{k}C^{3}(2a,a+k)=\frac{(3a)!}{\left(a!\right)^{3}} \]

(1)

(2)

(1)で\(a=b=c\)とおくと、
\[ \sum_{k=-a}^{a}(-1)^{k}C^{3}(2a,a+k)=\frac{(3a)!}{\left(a!\right)^{3}} \]

となるので与式は成り立つ。


ページ情報

タイトル

ディクソンの等式

URL

https://www.nomuramath.com/kga8k4q6/

SNSボタン