2項係数の微分
2項係数の微分
(1)
\begin{align*} \frac{d}{dx}C(x,y) & =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)\\ & =C(x,y)\left(H_{x}-H_{x-y}\right) \end{align*}(2)
\begin{align*} \frac{d}{dy}C(x,y) & =C(x,y)\left\{ \psi(1+x-y)-\psi(1+y)\right\} \\ & =C(x,y)\left\{ H_{x-y}-H_{y}\right\} \end{align*}(1)
\begin{align*} \frac{d}{dx}C(x,y) & =\frac{1}{y!}\frac{d}{dx}P(x,y)\\ & =\frac{1}{y!}P(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)\\ & =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)\\ & =C(x,y)\left(H_{x}-H_{x-y}\right) \end{align*}(2)
\begin{align*} \frac{d}{dy}C(x,y) & =\frac{1}{y!}\frac{d}{dy}P(x,y)+P(x,y)\frac{d}{dy}\frac{1}{\Gamma(y+1)}\\ & =\frac{1}{y!}P(x,y)\psi(1+x-y)+P(x,y)\frac{-\Gamma(y+1)\psi(y+1)}{\Gamma^{2}(y+1)}\\ & =C(x,y)\psi(1+x-y)-C(x,y)\psi(y+1)\\ & =C(x,y)\left\{ \psi(1+x-y)-\psi(1+y)\right\} \\ & =C(x,y)\left\{ H_{x-y}-H_{y}\right\} \end{align*}ページ情報
タイトル | 2項係数の微分 |
URL | https://www.nomuramath.com/xqn5ejgc/ |
SNSボタン |
2項係数の逆数の差分
\[
C^{-1}(k+j+1,j+1)=\frac{j+1}{j}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right)
\]
飛び飛びの2項定理
\[
\sum_{k=0}^{\infty}C\left(n,2k\right)a^{2k}b^{n-2k}=\frac{1}{2}\left\{ \left(a+b\right)^{n}+\left(-a+b\right)^{n}\right\}
\]
中央2項係数を含む通常型母関数
\[
\sum_{k=0}^{\infty}\frac{1}{k+1}C\left(2k,k\right)z^{k}=\frac{1}{2z}\left\{ 1-\left(1-4z\right)^{\frac{1}{2}}\right\}
\]
2項係数の飛び飛びの総和
\[
\sum_{k=-\infty}^{\infty}C\left(mn,mk+l\right)=\frac{1}{m}\sum_{j=0}^{m-1}\left(1+\omega_{m}^{j}\right)^{mn}\left(\omega_{m}^{j}\right)^{-l}
\]