2項係数の2乗和
中2項係数の2乗和
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\begin{align*}
\sum_{j=0}^{m}C^{2}(m,j) & =\sum_{j=0}^{m}C(m,j)C(m,m-j)\\
& =C(2m,m)
\end{align*}
ページ情報
タイトル | 2項係数の2乗和 |
URL | https://www.nomuramath.com/y6xkt7ax/ |
SNSボタン |
ディクソンの等式
\[
\sum_{k=-a}^{a}(-1)^{k}C(a+b,a+k)C(b+c,b+k)C(c+a,c+k)=\frac{(a+b+c)!}{a!b!c!}
\]
2項係数の飛び飛びの総和
\[
\sum_{k=-\infty}^{\infty}C\left(mn,mk+l\right)=\frac{1}{m}\sum_{j=0}^{m-1}\left(1+\omega_{m}^{j}\right)^{mn}\left(\omega_{m}^{j}\right)^{-l}
\]
パスカルの法則の応用
\[
C\left(x+n,y+n\right)=C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right)
\]
2項変換と交代2項変換の逆変換
\[
a_{n}=\sum_{k=0}^{n}(-1)^{n-k}C(n,k)b_{k}
\]