2項係数の2乗和
中2項係数の2乗和
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\begin{align*}
\sum_{j=0}^{m}C^{2}(m,j) & =\sum_{j=0}^{m}C(m,j)C(m,m-j)\\
& =C(2m,m)
\end{align*}
ページ情報
タイトル | 2項係数の2乗和 |
URL | https://www.nomuramath.com/y6xkt7ax/ |
SNSボタン |
2項係数の総和
\[
\sum_{k=0}^{n}P(k,m)C(n,k)=P(n,m)2^{n-m}
\]
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]
ファンデルモンドの畳み込み定理と第1引数の畳み込み
\[
\sum_{j=0}^{k}C(x,j)C(y,k-j)=C(x+y,k)
\]
中央2項係数の値
\[
C\left(2n,n\right)=4^{n}\left(-1\right)^{n}C\left(-\frac{1}{2},n\right)
\]