2項係数の特殊な積
2項係数の特殊な積
\[ C(x,t)C(t,y)=C(x,y)C(x-y,x-t) \]
\[ C(x,t)C(t,y)=C(x,y)C(x-y,x-t) \]
\begin{align*}
C(x,t)C(t,y) & =\frac{x!}{t!(x-t)!}\frac{t!}{y!(t-y)!}\\
& =\frac{x!}{y!(x-y)!}\frac{(x-y)!}{(x-t)!(t-y)!}\\
& =C(x,y)C(x-y,x-t)
\end{align*}
ページ情報
タイトル | 2項係数の特殊な積 |
URL | https://www.nomuramath.com/io58wa0k/ |
SNSボタン |
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]
中央2項係数を含む通常型母関数
\[
\sum_{k=0}^{\infty}\frac{1}{k+1}C\left(2k,k\right)z^{k}=\frac{1}{2z}\left\{ 1-\left(1-4z\right)^{\frac{1}{2}}\right\}
\]
ファンデルモンドの畳み込み定理と第1引数の畳み込み
\[
\sum_{j=0}^{k}C(x,j)C(y,k-j)=C(x+y,k)
\]
パスカルの法則の応用
\[
C\left(x+n,y+n\right)=C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right)
\]