2項係数の特殊な積
2項係数の特殊な積
\[ C(x,t)C(t,y)=C(x,y)C(x-y,x-t) \]
\begin{align*} C(x,t)C(t,y) & =\frac{x!}{t!(x-t)!}\frac{t!}{y!(t-y)!}\\ & =\frac{x!}{y!(x-y)!}\frac{(x-y)!}{(x-t)!(t-y)!}\\ & =C(x,y)C(x-y,x-t) \end{align*}
ページ情報
タイトル | 2項係数の特殊な積 |
URL | https://www.nomuramath.com/io58wa0k/ |
SNSボタン |
ファンデルモンドの畳み込み定理と第1引数の畳み込み
\[
\sum_{j=0}^{k}C(x,j)C(y,k-j)=C(x+y,k)
\]
2項係数の微分
\[
\frac{d}{dx}C(x,y) =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)
\]
2項係数の相加平均・相乗平均を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt[n]{\sqrt[n+1]{\prod_{k=0}^{n}C\left(n,k\right)}}=\sqrt{e}
\]