積分問題
\(n\in\mathbb{N}\)のとき、
\[ \int_{0}^{\infty}\frac{1}{1+x^{n}}dx \]
を求めよ。
\begin{align*} \int_{0}^{\infty}\frac{1}{1+x^{n}}dx & =\frac{1}{n}\int_{0}^{\infty}\frac{y^{\frac{1}{n}-1}}{1+y}dy\qquad,\qquad y=x^{n}\\ & =\frac{1}{n}\int_{0}^{1}z^{-\frac{1}{n}}(1-z)^{\frac{1}{n}-1}dz\qquad,\qquad z=\frac{1}{1+y}\\ & =\frac{1}{n}B\left(1-\frac{1}{n},\frac{1}{n}\right)\qquad,\qquad B\text{はベーター関数}\\ & =\frac{1}{n}\varGamma\left(1-\frac{1}{n}\right)\varGamma\left(\frac{1}{n}\right)\qquad,\qquad B\text{と}\varGamma\text{との関係}B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\\ & =\frac{\pi}{n}\sin^{-1}\frac{\pi}{n}\qquad,\qquad\text{相反公式}\Gamma(x)\Gamma(1-x)=\pi\sin^{-1}\pi x \end{align*}
ページ情報
タイトル | 積分問題 |
URL | https://www.nomuramath.com/aqufozzl/ |
SNSボタン |
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
ウォリス積分を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\sqrt{\frac{\pi}{2}}
\]
ベッセル関数のポアソン積分表示
\[
J_{\nu}(z)=\frac{1}{\sqrt{\pi}\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{z}{2}\right)^{\nu}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{izt}dt
\]
ウォリス積分の値
\[
\int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2}
\]