ウォリスの公式
ウォリスの公式
\[ \prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2} \]
\begin{align*} \prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right) & =\prod_{k=1}^{\infty}\left(\frac{(2k-1)(2k+1)}{(2k)}\right)^{-1}\\ & =\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}-1}{(2k)^{2}}\right)^{-1}\\ & =\frac{\pi}{2}\left\{ \frac{\pi}{2}\prod_{k=1}^{\infty}\left(1-\frac{\left(\frac{1}{2}\right)^{2}}{k^{2}}\right)\right\} ^{-1}\\ & =\frac{\pi}{2}\sin^{-1}\left(\frac{\pi}{2}\right)\qquad,\qquad\sin(\pi z)=\pi z\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)\\ & =\frac{\pi}{2} \end{align*}
ページ情報
タイトル | ウォリスの公式 |
URL | https://www.nomuramath.com/rszzqz7i/ |
SNSボタン |
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]
漸化式の基本
\[
a_{n+1}=a_{n}+d
\]
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
積分問題
\[
\int_{0}^{\infty}\frac{1}{1+x^{n}}dx
\]