ウォリス積分の同表示
ウォリス積分は以下の値に等しい
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\begin{align*}
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\cos^{n}\left(\theta-\frac{\pi}{2}\right)d\theta\\
& =\int_{0}^{\frac{\pi}{2}}\cos^{n}tdt\qquad,\qquad t=-\theta+\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | ウォリス積分の同表示 |
URL | https://www.nomuramath.com/vyufzw14/ |
SNSボタン |
ウォリスの公式
\[
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2}
\]
数列・関数の和・積・商・スカラー倍の極限
\[
\lim_{n\rightarrow\infty}a_{n}b_{n}=ab
\]
対数の指数
\[
a^{\log_{b}c}=c^{\log_{b}a}
\]
対数の基本公式
\[
\log M+\log N=\log MN
\]