空集合の定義と性質
空集合の定義と性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
(1)
空集合は唯1つ存在する。任意の元\(x\)に対し、\(x\notin\emptyset\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
(1)
空集合が\(\emptyset_{1},\emptyset_{2}\)の2つあり\(\emptyset_{1}\ne\emptyset_{2}\)と仮定する。このとき、任意の集合\(A\)に対し\(\emptyset_{1}\subseteq A\)が成り立つので\(A\)に\(\emptyset_{2}\)を代入すると、\(\emptyset_{1}\subseteq\emptyset_{2}\)となる。
同様に\(\emptyset_{2}\subseteq\emptyset_{1}\)が成り立つ。
これより、\(\emptyset_{1}\subseteq\emptyset_{2}\)かつ\(\emptyset_{2}\subseteq\emptyset_{1}\)なので\(\emptyset_{1}=\emptyset_{2}\)となるので矛盾。
従って、背理法より\(\emptyset_{1}=\emptyset_{2}\)となり、空集合は唯1つ存在する。
ページ情報
タイトル | 空集合の定義と性質 |
URL | https://www.nomuramath.com/z4pn0ulj/ |
SNSボタン |
2項係数の3の倍数の総和
\[
\sum_{k=0}^{\infty}C\left(3n,3k\right)=?
\]
逆三角関数と逆双曲線関数の対数表示
\[
\Sin^{\bullet}z=-i\Log\left(iz+\sqrt{1-z^{2}}\right)
\]
簡単な関数のフーリエ級数展開
\[
F\left(x\right)=\sum_{k=1}^{\infty}\frac{4}{\pi\left(2k-1\right)}\sin\left(\left(2k-1\right)x\right)
\]
連結成分・弧状連結成分と開集合・閉集合の関係