空集合の定義と性質
空集合の定義と性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
(1)
空集合は唯1つ存在する。任意の元\(x\)に対し、\(x\notin\emptyset\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
(1)
空集合が\(\emptyset_{1},\emptyset_{2}\)の2つあり\(\emptyset_{1}\ne\emptyset_{2}\)と仮定する。このとき、任意の集合\(A\)に対し\(\emptyset_{1}\subseteq A\)が成り立つので\(A\)に\(\emptyset_{2}\)を代入すると、\(\emptyset_{1}\subseteq\emptyset_{2}\)となる。
同様に\(\emptyset_{2}\subseteq\emptyset_{1}\)が成り立つ。
これより、\(\emptyset_{1}\subseteq\emptyset_{2}\)かつ\(\emptyset_{2}\subseteq\emptyset_{1}\)なので\(\emptyset_{1}=\emptyset_{2}\)となるので矛盾。
従って、背理法より\(\emptyset_{1}=\emptyset_{2}\)となり、空集合は唯1つ存在する。
ページ情報
| タイトル | 空集合の定義と性質 |
| URL | https://www.nomuramath.com/z4pn0ulj/ |
| SNSボタン |
ベータ関数・不完全ベータ関数の超幾何関数表示
\[
B\left(z;\alpha,\beta\right)=\frac{z^{\alpha}}{\alpha}F\left(\alpha,1-\beta;\alpha+1;z\right)
\]
整除関係の基本的な値
\[
\forall a\in\mathbb{Z},\pm1\mid a
\]
ベル数の漸化式
\[
B\left(n+1\right)=\sum_{k=0}^{n}C\left(n,k\right)B\left(k\right)
\]
調和数・一般化調和数の定義
\[
H_{n,m}:=\sum_{k=1}^{n}\frac{1}{k^{m}}
\]

