2項係数の逆数の差分
2項係数の逆数の差分
(1)
\[ C^{-1}(k+j+1,j+1)=\frac{j+1}{j}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right) \](2)
\[ \sum_{k=0}^{n}C^{-1}(k+j+1,j+1)=\frac{j+1}{j}\left(1-\frac{j!(n+1)!}{(n+j+1)!}\right) \](1)
\begin{align*} C^{-1}(k+j+1,j+1) & =\frac{j+1}{j}\left(\frac{k+j+1}{j+1}-\frac{k+1}{j+1}\right)\frac{(j+1)!k!}{(k+j+1)!}\\ & =\frac{j+1}{j}\left(\frac{j!k!}{(k+j)!}-\frac{j!(k+1)!}{(k+k+1)!}\right)\\ & =\frac{j+1}{j}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right) \end{align*}(2)
\begin{align*} \sum_{k=0}^{n}C^{-1}(k+j+1,j+1) & =\frac{j+1}{j}\sum_{k=0}^{n}\left(C^{-1}(k+j,j)-C^{-1}(k+j+1,j)\right)\\ & =\frac{j+1}{j}\left(C^{-1}(j,j)-C^{-1}(n+j+1,j)\right)\\ & =\frac{j+1}{j}\left(1-\frac{j!(n+1)!}{(n+j+1)!}\right) \end{align*}ページ情報
タイトル | 2項係数の逆数の差分 |
URL | https://www.nomuramath.com/ydpvw0qs/ |
SNSボタン |
ディクソンの等式
\[
\sum_{k=-a}^{a}(-1)^{k}C(a+b,a+k)C(b+c,b+k)C(c+a,c+k)=\frac{(a+b+c)!}{a!b!c!}
\]
2項係数が0になるとき
\[
\forall m,n\in\mathbb{Z},\left(0\leq m<n\right)\lor\left(n<0\leq m\right)\lor\left(m<n<0\right)\Leftrightarrow C\left(m,n\right)=0
\]
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]
2項変換と交代2項変換の逆変換
\[
a_{n}=\sum_{k=0}^{n}(-1)^{n-k}C(n,k)b_{k}
\]