複素数と複素共役の和・差
複素数と複素共役の和・差
(1)
\[ z\pm\overline{z}=2H\left(\pm1\right)\Re z+2iH\left(\mp1\right)\Im z \](2)
\[ -z\pm\overline{z}=-2H\left(\mp1\right)\Re z-2iH\left(\pm1\right)\Im z \](3)
\[ \overline{z}\pm z=2H\left(\pm1\right)\Re z-2iH\left(\mp1\right)\Im z \](4)
\[ -\overline{z}\pm z=-2H\left(\mp1\right)\Re z+2iH\left(\pm1\right)\Im z \]-
\(H\left(x\right)\)はヘヴィサイドの階段関数、\(\overline{z}\)は複素共役。(1)
\begin{align*} z\pm\overline{z} & =\Re z+i\Im z\pm\left(\Re z-i\Im z\right)\\ & =\left(1\pm1\right)\Re z+i\left(1\mp1\right)\Im z\\ & =2H\left(\pm1\right)\Re z+2iH\left(\mp1\right)\Im z \end{align*}(2)
\begin{align*} -z\pm\overline{z} & =-\left(z\mp\overline{z}\right)\\ & =-\left\{ 2H\left(\mp1\right)\Re z+2iH\left(\pm1\right)\Im z\right\} \\ & =-2H\left(\mp1\right)\Re z-2iH\left(\pm1\right)\Im z \end{align*}(3)
\begin{align*} \overline{z}\pm z & =\pm\left(z\pm\overline{z}\right)\\ & =\pm\left(2H\left(\pm1\right)\Re z+2iH\left(\mp1\right)\Im z\right)\\ & =\pm2H\left(\pm1\right)\Re z\pm2iH\left(\mp1\right)\Im z\\ & =2H\left(\pm1\right)\Re z-2iH\left(\mp1\right)\Im z \end{align*}(4)
\begin{align*} -\overline{z}\pm z & =-\left(\overline{z}\mp z\right)\\ & =-\left\{ 2H\left(\mp1\right)\Re z-2iH\left(\pm1\right)\Im z\right\} \\ & =-2H\left(\mp1\right)\Re z+2iH\left(\pm1\right)\Im z \end{align*}ページ情報
タイトル | 複素数と複素共役の和・差 |
URL | https://www.nomuramath.com/xpfxufi7/ |
SNSボタン |
符号関数の偏角・対数
\[
\Log\sgn\alpha=i\Arg\alpha
\]
複素数の冪関数の定義
\[
\alpha^{\beta}=e^{\beta\log\alpha}
\]
積が非負実数のべき乗
\[
\left(\Arg\left(\alpha\right)\ne\pi\lor\Arg\left(\beta\right)\ne\pi\right)\land0\leq a\beta\rightarrow\left(\alpha\beta\right)^{\gamma}=\alpha^{\gamma}\beta^{\gamma}
\]
対数の指数exp(Log(z))と指数の対数Log(exp(z))の違い
\[
\Re\left(z\right)+i\mod\left(\Im\left(z\right),-2\pi,\pi\right)=\Log\left(\exp\left(z\right)\right)
\]