偏角・対数と絶対値
偏角・対数と絶対値
\(\alpha\ne0\)とする。
\(\alpha\ne0\)とする。
(1)
\[ \Arg\left(\left|\alpha\right|\beta\right)=\Arg\beta \](2)
\[ \Log\left(\left|\alpha\right|\beta\right)=\ln\left|\alpha\right|+\Log\beta \](1)
\begin{align*} \Arg\left(\left|\alpha\right|\beta\right) & =-i\Log\left(\sgn\left(\left|\alpha\right|\beta\right)\right)\\ & =-i\Log\left(\sgn\left(\beta\right)\right)\\ & =\Arg\beta \end{align*}(2)
\begin{align*} \Log\left(\left|\alpha\right|\beta\right) & =\ln\left|\left|\alpha\right|\beta\right|+\Log\sgn\left(\left|\alpha\right|\beta\right)\\ & =\ln\left|\alpha\right|+\ln\left|\beta\right|+\Log\sgn\left(\beta\right)\\ & =\ln\left|\alpha\right|+\Log\beta \end{align*}ページ情報
タイトル | 偏角・対数と絶対値 |
URL | https://www.nomuramath.com/wrmjwxo9/ |
SNSボタン |
絶対値の冪乗
\[
\left(\left|\alpha\right|\beta\right)^{\gamma}=\left|\alpha\right|^{\gamma}\beta^{\gamma}
\]
符号関数の偏角・対数
\[
\Log\sgn\alpha=i\Arg\alpha
\]
対数と偏角の基本
\[
\log z=\Log z+\log1
\]
逆数の偏角と対数
\[
\Arg z^{-1}=-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)}
\]