偏角・対数と絶対値
偏角・対数と絶対値
\(\alpha\ne0\)とする。
\(\alpha\ne0\)とする。
(1)
\[ \Arg\left(\left|\alpha\right|\beta\right)=\Arg\beta \](2)
\[ \Log\left(\left|\alpha\right|\beta\right)=\ln\left|\alpha\right|+\Log\beta \](1)
\begin{align*} \Arg\left(\left|\alpha\right|\beta\right) & =-i\Log\left(\sgn\left(\left|\alpha\right|\beta\right)\right)\\ & =-i\Log\left(\sgn\left(\beta\right)\right)\\ & =\Arg\beta \end{align*}(2)
\begin{align*} \Log\left(\left|\alpha\right|\beta\right) & =\ln\left|\left|\alpha\right|\beta\right|+\Log\sgn\left(\left|\alpha\right|\beta\right)\\ & =\ln\left|\alpha\right|+\ln\left|\beta\right|+\Log\sgn\left(\beta\right)\\ & =\ln\left|\alpha\right|+\Log\beta \end{align*}ページ情報
タイトル | 偏角・対数と絶対値 |
URL | https://www.nomuramath.com/wrmjwxo9/ |
SNSボタン |
複素数の冪関数の定義
\[
\alpha^{\beta}=e^{\beta\log\alpha}
\]
偏角の和と積の偏角
\[
\Arg\left(\alpha\right)+\Arg\left(\beta\right)=?\Arg\left(\alpha\beta\right)
\]
積が非負実数のべき乗
\[
\left(\Arg\left(\alpha\right)\ne\pi\lor\Arg\left(\beta\right)\ne\pi\right)\land0\leq a\beta\rightarrow\left(\alpha\beta\right)^{\gamma}=\alpha^{\gamma}\beta^{\gamma}
\]
対数と偏角の性質
\[
\log\alpha^{\beta}=\beta\log\alpha+\log1
\]