無相関のときに成り立つ関係
確率変数\(X,Y\)が無相関のとき、
\[ E(XY)=E(X)E(Y) \] となる。
\[ E(XY)=E(X)E(Y) \] となる。
無相関のとき\(Cov(X,Y)=0\)となり、
\begin{align*} 0 & =Cov(X,Y)\\ & =E(XY)-E(X)E(Y) \end{align*} より、
\[ E(XY)=E(X)E(Y) \]
\begin{align*} 0 & =Cov(X,Y)\\ & =E(XY)-E(X)E(Y) \end{align*} より、
\[ E(XY)=E(X)E(Y) \]
ページ情報
| タイトル | 無相関のときに成り立つ関係 |
| URL | https://www.nomuramath.com/xgye7qg2/ |
| SNSボタン |
相加平均・相乗平均・調和平均の関係
\[
\mu_{H}\left(x_{1},x_{2}\right)=\frac{\mu_{G}^{\;2}\left(x_{1},x_{2}\right)}{\mu_{A}\left(x_{1},x_{2}\right)}
\]
中心極限定理
\[
\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n}\sigma}\left(\sum_{i=1}^{n}X_{i}-n\mu\right)=N(0,1)
\]
誤差関数・相補誤差関数・虚数誤差関数の定義
\[
erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt
\]
独立と無相関の定義
\[
P\left(X=x,Y=y\right)=P(X=x)P(Y=y)
\]

