4次式の点の軌跡
4次式の点の軌跡
\(t\)が実数全体を動くとき、点\(\left(t^{2}+1,t^{4}+2t^{2}\right)\)の軌跡を求めよ。
\(t\)が実数全体を動くとき、点\(\left(t^{2}+1,t^{4}+2t^{2}\right)\)の軌跡を求めよ。
点\(\left(t^{2}+1,t^{4}+2t^{2}\right)\)を\(\left(x,y\right)\)と置いて、
\begin{align*} \exists t,\begin{cases} x=t^{2}+1\\ y=t^{4}+2t^{2} \end{cases} & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=t^{4}+2t^{2} \end{cases}\\ & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=\left(x-1\right)^{2}+2\left(x-1\right) \end{cases}\\ & \Leftrightarrow\begin{cases} 0\leq x-1\\ y=x^{2}-1 \end{cases}\\ & \Leftrightarrow\begin{cases} 1\leq x\\ y=x^{2}-1 \end{cases} \end{align*} となるので\(y=x^{2}-1\land1\leq x\)となる。
\begin{align*} \exists t,\begin{cases} x=t^{2}+1\\ y=t^{4}+2t^{2} \end{cases} & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=t^{4}+2t^{2} \end{cases}\\ & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=\left(x-1\right)^{2}+2\left(x-1\right) \end{cases}\\ & \Leftrightarrow\begin{cases} 0\leq x-1\\ y=x^{2}-1 \end{cases}\\ & \Leftrightarrow\begin{cases} 1\leq x\\ y=x^{2}-1 \end{cases} \end{align*} となるので\(y=x^{2}-1\land1\leq x\)となる。
ページ情報
| タイトル | 4次式の点の軌跡 |
| URL | https://www.nomuramath.com/uybes7w4/ |
| SNSボタン |
2の34乗と5の14乗の大小関係
\[
2^{34}\lesseqgtr5^{14}
\]
2変数2次式の最小値
$x^{2}+2xy+2y^{2}+2x+3$の最小値
1=2の証明
この証明はどこが間違えてる?
3乗根の有理化
\[
\frac{1}{2\cdot3^{\frac{2}{3}}+3\cdot3^{\frac{1}{3}}+2}\text{の有理化}
\]

