4次式の点の軌跡
4次式の点の軌跡
\(t\)が実数全体を動くとき、点\(\left(t^{2}+1,t^{4}+2t^{2}\right)\)の軌跡を求めよ。
\(t\)が実数全体を動くとき、点\(\left(t^{2}+1,t^{4}+2t^{2}\right)\)の軌跡を求めよ。
点\(\left(t^{2}+1,t^{4}+2t^{2}\right)\)を\(\left(x,y\right)\)と置いて、
\begin{align*} \exists t,\begin{cases} x=t^{2}+1\\ y=t^{4}+2t^{2} \end{cases} & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=t^{4}+2t^{2} \end{cases}\\ & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=\left(x-1\right)^{2}+2\left(x-1\right) \end{cases}\\ & \Leftrightarrow\begin{cases} 0\leq x-1\\ y=x^{2}-1 \end{cases}\\ & \Leftrightarrow\begin{cases} 1\leq x\\ y=x^{2}-1 \end{cases} \end{align*} となるので\(y=x^{2}-1\land1\leq x\)となる。
\begin{align*} \exists t,\begin{cases} x=t^{2}+1\\ y=t^{4}+2t^{2} \end{cases} & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=t^{4}+2t^{2} \end{cases}\\ & \Leftrightarrow\exists t,\begin{cases} t^{2}=x-1\\ y=\left(x-1\right)^{2}+2\left(x-1\right) \end{cases}\\ & \Leftrightarrow\begin{cases} 0\leq x-1\\ y=x^{2}-1 \end{cases}\\ & \Leftrightarrow\begin{cases} 1\leq x\\ y=x^{2}-1 \end{cases} \end{align*} となるので\(y=x^{2}-1\land1\leq x\)となる。
ページ情報
タイトル | 4次式の点の軌跡 |
URL | https://www.nomuramath.com/uybes7w4/ |
SNSボタン |
3次式の5乗を2次式で割った余り
$\left(x^{3}+x^{2}+x+1\right)^{5}$を$x^{2}-x+1$で割った余りは?
x²-x+1で割った余り
$x^{1000}$を$x^{2}-x+1$で割った余り
階乗の冪婚を含む極限値問題
\[
\lim_{n\rightarrow\infty}\frac{n}{\sqrt[n]{n!}}
\]
2の34乗と5の14乗の大小関係
\[
2^{34}\lesseqgtr5^{14}
\]