カントールの区間縮小法
カントールの区間縮小法
閉区間\(I_{n}=\left[a_{n},b_{n}\right],\left(n\in\mathbb{N}\right)\)が\(I_{n}\supseteq I_{n+1}\)を満たし、\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=0\)となるとき、\(\bigcap_{n\in\mathbb{N}}I_{n}=\left\{ \alpha\right\} \)となる\(\alpha\)が存在する。
ここで\(\alpha=\lim_{n\rightarrow\infty}a_{n}=\lim_{n\rightarrow\infty}b_{n}\)である。
閉区間\(I_{n}=\left[a_{n},b_{n}\right],\left(n\in\mathbb{N}\right)\)が\(I_{n}\supseteq I_{n+1}\)を満たし、\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=0\)となるとき、\(\bigcap_{n\in\mathbb{N}}I_{n}=\left\{ \alpha\right\} \)となる\(\alpha\)が存在する。
ここで\(\alpha=\lim_{n\rightarrow\infty}a_{n}=\lim_{n\rightarrow\infty}b_{n}\)である。
\(a_{n}\)は有界で単調増加数列であるので\(\lim_{n\rightarrow\infty}a_{n}=\alpha\)となる\(\alpha\)が存在する。
同様に\(b_{n}\)は有界で単調減少数列であるので\(\lim_{n\rightarrow\infty}b_{n}=\beta\)となる\(\beta\)が存在する。
\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=\beta-\alpha=0\)なので\(\alpha=\beta\)となる。
任意の\(n\)に対し\(a_{n}\leq\alpha\leq b_{n}\)となるので\(\alpha\in I_{n}\)となり、\(\lim_{n\rightarrow\infty}I_{n}=\lim_{n\rightarrow\infty}\left[a_{n},b_{n}\right]=\alpha\)となる。
これより、題意は成り立つ。
同様に\(b_{n}\)は有界で単調減少数列であるので\(\lim_{n\rightarrow\infty}b_{n}=\beta\)となる\(\beta\)が存在する。
\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=\beta-\alpha=0\)なので\(\alpha=\beta\)となる。
任意の\(n\)に対し\(a_{n}\leq\alpha\leq b_{n}\)となるので\(\alpha\in I_{n}\)となり、\(\lim_{n\rightarrow\infty}I_{n}=\lim_{n\rightarrow\infty}\left[a_{n},b_{n}\right]=\alpha\)となる。
これより、題意は成り立つ。
ページ情報
| タイトル | カントールの区間縮小法 |
| URL | https://www.nomuramath.com/tmv0mq6l/ |
| SNSボタン |
数列が収束するならば有界
収束列ならばコーシー列
収束列ならばコーシー列となるが逆は一般に成り立たない。
極限と積分・微分の順序変更
\[
\lim_{n\rightarrow\infty}\int_{a}^{b}f_{n}\left(x\right)dx=\int_{a}^{b}\lim_{n\rightarrow\infty}f_{n}\left(x\right)dx
\]
ディリクレの判定法

