(*)チェビシェフ多項式の超幾何表示
チェビシェフ多項式の超幾何表示
(1)
\[ T_{n}(x)=F\left(-n,n;\frac{1}{2};\frac{1-x}{2}\right) \](2)
\[ U_{n}(x)=\left(n+1\right)F\left(-n,n+2;\frac{3}{2};\frac{1-x}{2}\right) \](1)
略(2)
略ページ情報
タイトル | (*)チェビシェフ多項式の超幾何表示 |
URL | https://www.nomuramath.com/tehjbau1/ |
SNSボタン |
チェビシェフの微分方程式
\[
\left(1-x^{2}\right)T_{n}''(x)-xT_{n}'(x)+n^{2}T_{n}(x)=0
\]
第1種・第2種と第3種チェビシェフ多項式同士の関係
\[
V(-x)=(-1)^{n}W_{n}(x)
\]
第1種・第2種チェビシェフ多項式の定義
\[
T_{n}(\cos t)=\cos(nt)
\]
第1種チェビシェフ多項式と第2種チェビシェフ多項式の関係
\[
nU_{n-1}(x)=T_{n}'(x)
\]