(*)チェビシェフ多項式の超幾何表示
チェビシェフ多項式の超幾何表示
(1)
\[ T_{n}(x)=F\left(-n,n;\frac{1}{2};\frac{1-x}{2}\right) \](2)
\[ U_{n}(x)=\left(n+1\right)F\left(-n,n+2;\frac{3}{2};\frac{1-x}{2}\right) \](1)
略(2)
略ページ情報
| タイトル | (*)チェビシェフ多項式の超幾何表示 |
| URL | https://www.nomuramath.com/tehjbau1/ |
| SNSボタン |
チェビシェフ多項式の母関数
\[
\sum_{k=0}^{\infty}T_{k}(x)t^{k}=\frac{1-tx}{1-2tx+t^{2}}
\]
チェビシェフ多項式の級数表示
\[
T_{n}(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2}\right\rfloor }\left(C(n,2k)\left(-1\right)^{k}\left(1-x^{2}\right)^{k}x^{n-2k}\right)
\]
チェビシェフ多項式の漸化式
\[
T_{n+1}(x)=2xT_{n}(x)-T_{n-1}(x)
\]
チェビシェフ多項式の直交性
\[
\int_{-1}^{1}T_{m}(x)T_{n}(x)\frac{dx}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\left(\delta_{mn}+\delta_{0m}\delta_{0n}\right)
\]

