離散位相は距離化可能
離散位相は距離化可能
離散位相\(\left(X,2^{X}\right)\)は離散距離空間\(\left(X,d\right)\)で距離化可能である。
離散位相\(\left(X,2^{X}\right)\)は離散距離空間\(\left(X,d\right)\)で距離化可能である。
任意の\(x\in X\)に対し\(U_{1/2}\left(x\right)=\left\{ x\right\} \)となるので\(\left\{ x\right\} \)は開集合となる。
任意の部分集合\(A\subseteq X\)をとると、\(A=\bigcup_{x\in A}\left\{ x\right\} \)となるので\(A\)は開集合となる。
これより、離散距離空間\(\left(X,d\right)\)の開集合\(\mathcal{O}_{d}\)は\(\mathcal{O}_{d}=2^{x}\)となるので題意は成り立つ。
任意の部分集合\(A\subseteq X\)をとると、\(A=\bigcup_{x\in A}\left\{ x\right\} \)となるので\(A\)は開集合となる。
これより、離散距離空間\(\left(X,d\right)\)の開集合\(\mathcal{O}_{d}\)は\(\mathcal{O}_{d}=2^{x}\)となるので題意は成り立つ。
ページ情報
タイトル | 離散位相は距離化可能 |
URL | https://www.nomuramath.com/s4i1c176/ |
SNSボタン |
距離空間での開集合と閉集合の定義
\[
\forall x\in A,\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
点列の収束と任意の部分列の収束
点列の収束と任意の部分列の収束
チェビシェフ距離は距離空間
\[
d_{\infty}\left(\boldsymbol{x},\boldsymbol{y}\right)=\max\left(\left|x_{1}-y_{1}\right|,\cdots,\left|x_{n}-y_{n}\right|\right)
\]
点と集合との距離の関係
\[
d\left(x,A\right)=0\Leftrightarrow x\in A^{a}
\]