第1種・第2種不完全ガンマ関数の定義
第1種・第2種不完全ガンマ関数の定義
(1)第1種不完全ガンマ関数
\(\Re\left(a\right)>0\)とする。
\[ \gamma\left(a,x\right)=\int_{0}^{x}t^{a-1}e^{-t}dt \]
(2)第2種不完全ガンマ関数
\[ \Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt \]
ページ情報
タイトル | 第1種・第2種不完全ガンマ関数の定義 |
URL | https://www.nomuramath.com/qe15jqle/ |
SNSボタン |
ガンマ関数の対数とリーマン・ゼータ関数
\[
\log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k}
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]
不完全ガンマ関数とガンマ関数との関係
\[
\gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right)
\]
ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
\[
\Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt
\]