ガンマ関数の1/2値
ガンマ関数の\(\frac{1}{2}\)での値は以下の通りになる。
\[ \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \]
\[ \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \]
1
\begin{align*} \Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty}t^{\frac{1}{2}-1}e^{-t}dt\\ & =\int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t}dt\\ & =2\int_{0}^{\infty}e^{-s^{2}}ds\qquad,\qquad t=s^{2}\\ & =\sqrt{\pi} \end{align*}2
\begin{align*} \Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty}t^{\frac{1}{2}-1}e^{-t}dt\\ & >\int_{0}^{\infty}0dt\\ & =0 \end{align*} より、\begin{align*} \Gamma\left(\frac{1}{2}\right) & =\sqrt{\Gamma^{2}\left(\frac{1}{2}\right)}\\ & =\sqrt{\Gamma\left(\frac{1}{2}\right)\Gamma\left(1-\frac{1}{2}\right)}\\ & =\sqrt{\pi\sin^{-1}\left(\frac{\pi}{2}\right)}\\ & =\sqrt{\pi} \end{align*}
ページ情報
タイトル | ガンマ関数の1/2値 |
URL | https://www.nomuramath.com/fsphpruv/ |
SNSボタン |
ガンマ関数の無限乗積
\[
\Gamma(x)=\lim_{n\rightarrow\infty}n^{x}n!Q^{-1}(x,n+1)
\]
ガンマ関数の漸化式
\[
\Gamma(z+1)=z\Gamma(z)
\]
ガンマ関数の非正整数近傍での値
\[
\lim_{\epsilon\rightarrow\pm0}\Gamma\left(-\epsilon\right)=-\lim_{\epsilon\rightarrow\pm0}\Gamma\left(\epsilon\right)
\]
階乗と階乗の逆数の母関数
\[
\frac{x^{a}}{a!}=e^{x}\left(\frac{\Gamma\left(a+1,x\right)}{\Gamma\left(a+1\right)}-\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)}\right)
\]