ガンマ関数の1/2値
ガンマ関数の\(\frac{1}{2}\)での値は以下の通りになる。
\[ \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \]
\[ \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \]
1
\begin{align*} \Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty}t^{\frac{1}{2}-1}e^{-t}dt\\ & =\int_{0}^{\infty}t^{-\frac{1}{2}}e^{-t}dt\\ & =2\int_{0}^{\infty}e^{-s^{2}}ds\qquad,\qquad t=s^{2}\\ & =\sqrt{\pi} \end{align*}2
\begin{align*} \Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty}t^{\frac{1}{2}-1}e^{-t}dt\\ & >\int_{0}^{\infty}0dt\\ & =0 \end{align*} より、\begin{align*} \Gamma\left(\frac{1}{2}\right) & =\sqrt{\Gamma^{2}\left(\frac{1}{2}\right)}\\ & =\sqrt{\Gamma\left(\frac{1}{2}\right)\Gamma\left(1-\frac{1}{2}\right)}\\ & =\sqrt{\pi\sin^{-1}\left(\frac{\pi}{2}\right)}\\ & =\sqrt{\pi} \end{align*}
ページ情報
タイトル | ガンマ関数の1/2値 |
URL | https://www.nomuramath.com/fsphpruv/ |
SNSボタン |
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]
ガンマ関数のルジャンドル倍数公式
\[
\Gamma(2z)=\frac{2^{2z-1}}{\sqrt{\pi}}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right)
\]
負の整数の階乗の商
\[
\frac{\left(-m\right)!}{\left(-n\right)!}=\left(-1\right)^{n-m}\frac{\Gamma\left(n\right)}{\Gamma\left(m\right)}
\]
ガンマ関数の相反公式
\[
\Gamma(z)\Gamma(1-z)=\pi\sin^{-1}(\pi z)
\]